Skip to main content

Concentrating Solar Power Technologies: Solar Field Types and Additional Systems

  • Chapter
  • First Online:
Book cover The Economics and Policy of Concentrating Solar Power Generation

Part of the book series: Green Energy and Technology ((GREEN))

  • 438 Accesses

Abstract

Different CSP generation technologies can be distinguished depending on the type of collector’s optics and solar receiver. In particular, they differ according to the geometrical shape and spatial placement of the mirrors, which determine the degree of concentration of DNI in the solar collector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The manufacturing cost of a single parabolic mirror with several meters width would be prohibitive, and its installation would be challenging.

  2. 2.

    This is a toxic mix of two hydrocarbons, the biphenyl, and the diphenyl oxide. It is also flammable, with self-ignition above 600 °C (see http://www.therminol.com). At the end of the last decade, its price was slightly above €10/kg.

  3. 3.

    In case of dry cooling, the water consumption rate is around 0.25 m3/MWh.

  4. 4.

    Lovegrove et al. [15] mentioned a dish made up of 380 mirror panels which, once they were appropriately nested, they made up a paraboloidal dish of 25 m diameter and 500 m2 collector surface.

  5. 5.

    The absence of wind is also required.

  6. 6.

    A micron (1 μm) is equivalent to a thousandth of a millimeter and comprises 1000 nm. For example, algae usually have a size between 5 and 100 μm, bacteria are between 0.4 and 30 μm, viruses are between 0.01 and 0.1 μm, and dissolved salts (Ca, Na, Mg) are between 0.0001 and 0.001 μm.

References

  1. ATKearney (2010) Solar thermal electricity 2025. Clean electricity on demand: attractive STE cost stabilize energy production. A.T. Kearney Inc., Estela. Available at http://www.estelasolar.eu. Accessed May 2012

  2. Behar O et al (2013) A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev 23:12–39

    Article  Google Scholar 

  3. Bockamp S et al (2003) Solar thernal power generation. Berlin, Fresnel-Collectors Project, E.On/Fraunhofer ISE/PSE/DLR. Available at https://pdfs.semanticscholar.org. Accessed May 2008

  4. Carter NT, Campbell RJ (2009) Water issues of concentrating solar power (CSP) electricity in the U.S. Southwest. In: CRS report for congress. Available at http://www.crs.gov. Accessed May 2014

  5. Compain P (2012) Solar energy for water desalination. Proc Eng 46:220–227

    Article  Google Scholar 

  6. Drury E et al (2012) Solar energy technologies. In: Hand MM et al (eds) Renewable electricity futures study. Volume 2: renewable electricity generation and storage technologies, pp. 10-1–10-60. Report NREL/TP-6A20-52409. National Renewable Energy Laboratory (NREL), Golden, CO (Chapter 10). Available at http://www.nrel.gov/analysis/re_futures. Accessed July 2014

  7. Edenhofer O et al (eds) (2012) Renewable energy sources and climate change mitigation. Special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  8. Everett B (2004) Solar thermal energy. In Boyle G (ed) Renewable energy. Power for a sustainable future, 2nd edn. Oxford University Press, Oxford, pp 17–64

    Google Scholar 

  9. El-Sebaii AA (2011) History of the solar ponds: a review study. Renew Sustain Energy Rev 15:3319–3325

    Article  Google Scholar 

  10. GEA (2012) Global energy assessment. Toward a sustainable future. Cambridge University Press and IIASA, Cambridge, Laxenburg

    Google Scholar 

  11. Günther M (2011) Advanced CSP teaching materials. Linear fresnel technology. EnerMENA and DLR (Chapter 6). Available at http://www.energy-science.org. Accessed Apr 2017

  12. Günther M et al (2011) Advanced CSP teaching materials. Parabolic trough technology. EnerMENA and DLR (Chapter 5). Available at http://edge.rit.edu. Accessed Apr 2017

  13. Hinkley J et al (2011) Concentrating solar power—drivers and opportunities for cost-competitive electricity. CSIRO. Available at http://www.csiro.au. Accessed June 2013

  14. Laing D, Weinrebe G (2007) Dish/Stirling systems. In: Kaltschmitt M et al (eds) Renewable energy. Technology, economics and environment. Springer, Heidelberg, pp. 203–212

    Google Scholar 

  15. Lovegrove K et al (2011) A new 500 m2 paraboloidal dish solar concentrator. Sol Energy 85:620–626

    Article  Google Scholar 

  16. Madaeni S et al (2012) How thermal energy storage enhances the economic viability of concentrating solar power. Proc IEEE 100(2):335–347

    Article  Google Scholar 

  17. Mai T et al (2012) Appendix C. Estimation of life cycle greenhouse gas emissions. In: Mai T et al (eds) Renewable electricity futures study. Volume 1: exploration of high-penetration renewable electricity futures. Report NREL/TP-6A20–52409. National Renewable Energy Laboratory (NREL), Golden, CO, pp C-1/C-11. Available at http://www.nrel.gov/analysis/re_futures. Accessed July 2014

  18. Mills DR (2000) Compact linear Fresnel reflector solar thermal powerplants. Sol Energy 63(3):263–283

    Article  Google Scholar 

  19. Mills D (2004) Advances in solar thermal electricity technology. Sol Energy 74:19–31

    Article  Google Scholar 

  20. MIT (2015) The future of solar energy. An interdisciplinary MIT study. Massachusetts Institute of Technology, Cambridge. Available at http://mitei.mit.edu. Accessed May 2015

  21. Montgomery SL (2010) The powers that be. Global energy for the twenty-first century and beyond. The University of Chicago Press, Chicago

    Book  Google Scholar 

  22. Palenzuela P et al (2015) Concentrating solar power and desalination plants. Engineering and economics of coupling multi-effect distillation and solar plants. Springer, Berlin

    Book  Google Scholar 

  23. Perales T (2011) Instalaciones termosolares. Tecnologías, Sistemas y Aplicaciones. Creaciones Copyright, Madrid

    Google Scholar 

  24. Pitz-Pall R et al (2005) European concentrated solar thermal road-mapping. WP 3 deliverance no 7. Ecostar Team-DLR. Available at http://www.solarpaces.org/library. Accessed Apr 2010

  25. Pujol R (2009) Le retour d’un acteur français dans le secteur de la technologie du solaire à concentration. Réalités Industrielles, Nov 2009, pp 89–95

    Article  Google Scholar 

  26. Trieb F et al (2005) Concentrating solar power for the mediterranean region. Final report. German Aerospace Center-Institute of Technical Thermodynamics/Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Stuttgart. Available at www.dlr.de. Accessed Apr 2010

  27. Trieb F et al (2007) Concentrating solar power for seawater desalination. In: Paper presented at Middle East North Africa renewable energy conference) (MENAREC), 4th edn. Damascus, Syria 20–24 June 2007. Available at http://citeseerx.ist.psu.edu. Accessed Aug 2011

  28. Viebahn P et al (2008) Final report on technical data, costs, and life cycle inventories of solar thermal power plants. Deliverable no 12.2-RS Ia, project no 502687 NEEDS/Sixth FP. DLR, CIEMAT. Available at https://www.solarthermalworld.org. Accessed Nov 2012

  29. Wienrebe G (2007a) Solar tower power stations. In: Kaltschmitt M et al (eds) Renewable energy. Technology, economics and environment. Springer, Heidelberg, pp 181–193

    Google Scholar 

  30. Wienrebe G (2007b) Parabolic trough power plants. In: Kaltschmitt M et al (eds) Renewable energy. Technology, economics and environment. Springer, Heidelberg, pp 194–203

    Google Scholar 

  31. Wienrebe G, Ortmanns W (2007) Principles. In: Kaltschmitt M et al (eds) Renewable energy. Technology, economics and environment. Springer, Heidelberg, pp 171–181

    Google Scholar 

  32. Xie WT et al (2011) Concentrated solar energy applications using Fresnel lenses: a review. Renew Sustain Energy Rev 15:2588–2606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pere Mir-Artigues .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir-Artigues, P., del Río, P., Caldés, N. (2019). Concentrating Solar Power Technologies: Solar Field Types and Additional Systems. In: The Economics and Policy of Concentrating Solar Power Generation. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-11938-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11938-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11937-9

  • Online ISBN: 978-3-030-11938-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics