Skip to main content

Comparison of Reaction Times of a Visual and a Haptic Cue for Teaching Eco-Driving

An Experiment to Explore the Applicability of a Smartwatch

  • Conference paper
  • First Online:
The Challenges of the Digital Transformation in Education (ICL 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 917))

Included in the following conference series:

Abstract

Climate change increases the interest in Green Information Systems (IS) research. Green IS technologies enable the reduction of energy consumption by teaching eco-driving to make the driver aware of inefficient fuel consumption. To teach eco-driving (energy-efficient human behavior), car manufacturers applied in-car information systems. Due to the increasing visual in-car information, alternative solutions are necessary. However, the haptic interaction channel has a short reaction time for a given cue and seems to be an applicable solution to replace visual in-car information. The examined studies investigating haptic cues in the context of energy consumption and automotive applications have used the gas pedal—with lower user acceptance—to interact with the driver. For this reason, we investigate a smartwatch as the haptic cue in a laboratory experiment to teach eco-driving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson, R.T., Boudreau, M.-C., Chen, A.J.: Information systems and environmentally sustainable development: energy informatics and new directions for the IS community. MIS Q. 34(1), 23–38 (2010)

    Article  Google Scholar 

  2. Jamson, S.L., Hibberd, D.L., Jamson, A.H.: Drivers’ ability to learn eco-driving skills; effects on fuel efficient and safe driving behaviour. Transp. Res. Part C Emerg. Technol. (2015)

    Google Scholar 

  3. Inbar, O., Tractinsky, N., Tsimhoni, O., Seder, T.: Driving the scoreboard: motivating eco-driving through in-car gaming. In: CHI Gamification Workshop. Vancouver, BC, Canada (2011)

    Google Scholar 

  4. Barkenbus, J.N.: Eco-driving: an overlooked climate change initiative. Energy Policy 38(2), 762–769 (2010)

    Article  Google Scholar 

  5. Gonder, J., Earleywine, M., Sparks, W.: Analyzing vehicle fuel saving opportunities through intelligent driver feedback. SAE Technical Paper (2012)

    Google Scholar 

  6. Beusen, B., Broekx, S., Denys, T., Beckx, C., Degraeuwe, B., Gijsbers, M., Scheepers, K., Govaerts, L., Torfs, R., Panis, L.I.: Using on-board logging devices to study the longer-term impact of an eco-driving course. Transp. Res. Part D Transp. Environ. 14(7), 514–520 (2009)

    Article  Google Scholar 

  7. Kaufmann-Hayoz, R., Lauper, L., Fischer, M., Moser, S., Schlachter, I., Meloni, T.: What makes car users adopt an environmentally friendly driving style? In: Proceedings of INTER-NOISE. New York, NY, USA (2012)

    Google Scholar 

  8. Ablaßmeier, M., Poitschke, T., Wallhoff, F., Bengler, K., Rigoll, G.: Eye gaze studies comparing head-up and head-down displays in vehicles. In: IEEE International Conference on Multimedia and Expo. IEEE, Beijing, China (2007)

    Google Scholar 

  9. Froehlich, J., Findlater, L., Landay, J.: The design of eco-feedback technology. In: Proceedings of the SIGCHI 2010 Conference on Human Factors in Computing Systems. Atlanta, GA, USA: ACM (2010)

    Google Scholar 

  10. Kern, D., Schmidt, A.: Design space for driver-based automotive user interfaces, In: 1st International Conference on AutomotiveUI ’09. pp. 3–10, Essen, Germany: ACM (2009)

    Google Scholar 

  11. Meschtscherjakov, A. et al.: Acceptance of future persuasive in-car interfaces towards a more economic driving behaviour. In: 1st International Conference on AutomotiveUI ’09. Essen, Germany: ACM (2009)

    Google Scholar 

  12. Jamson, A.H., Hibberd, D.L., Merat, N.: Interface design considerations for an in-vehicle eco-driving assistance system. Transp. Res. Part C Emer. Technol. 58, 642–656 (2015)

    Article  Google Scholar 

  13. Staubach, M., Kassner, A., Fricke, N., Schießl, C.: Driver reactions on ecological driver feedback via different HMI modalities. In: Proceedings of the 19th World Congress on ITS. Vienna, Austria (2012)

    Google Scholar 

  14. Gottlieb, M., Böhm, M., Krcmar, H.: Analyzing measures for the construct “energy-conscious driving”: a synthesized measurement model to operationalize eco-feedback. In: 22nd Pacific Asia Conference on Information Systems. Yokohama, Japan (2018)

    Google Scholar 

  15. Landau, M., Loehmann, S., Koerber, M.: Energy flow: a multimodal ‘ready’ indication for electric vehicles, In: Adjunct Proceedings of the 6th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. pp. 1–6, Seattle, WA, USA, ACM (2014)

    Google Scholar 

  16. Coughlin, B.: Haptic Apparatus and Coaching Method for Improving Vehicle Fuel Economy. Ford Global Technologies Llc, USA (2009)

    Google Scholar 

  17. Birrell, S.A., Young, M.S., Weldon, A.M.: Vibrotactile pedals: provision of haptic feedback to support economical driving. Ergonomics 56(2), 282–292 (2013)

    Article  Google Scholar 

  18. Mulder, M., Abbink, D.A., van Paassen, M.M., Mulder, M.: Design of a haptic gas pedal for active car-following support. Intell. Transp. Syst. IEEE Trans. 12(1), 268–279 (2011)

    Article  Google Scholar 

  19. Azzi, S., Reymond, G., Mérienne, F., Kemeny, A.: Eco-driving performance assessment with in-car visual and haptic feedback assistance. J. Comput. Inf. Sci. Eng. 11(4), 181–190 (2011)

    Article  Google Scholar 

  20. Utesch, M.C.: A successful approach to study skills: Go4C´ s projects strengthen teamwork. Int. J. Eng. Pedagogy (iJEP) 6(1), 35–43 (2016)

    Article  Google Scholar 

  21. Mulder, M., Mulder, M., van Paassen, M.M., Abbink, D.A.: Haptic gas pedal feedback. Ergonomics 51(11), 1710–1720 (2008)

    Article  Google Scholar 

  22. Rydström, A., Grane, C., Bengtsson, P.: Driver behaviour during haptic and visual secondary tasks. In: Proceedings of the 1st International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM, Essen, Germany (2009)

    Google Scholar 

  23. Birrell, S.A., Young, M.S., Weldon, A.M.: Delivering smart driving feedback through a haptic pedal. In: Proceedings of the International Conference on Contemporary Ergonomics and Human Factors 2010. Taylor & Francis Ltd (2010)

    Google Scholar 

  24. Miller, M.: The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities are Changing the World. 1 edn, Indianapolis, IN, USA: Pearson Education, Indianapolis, Indiana (2015)

    Google Scholar 

  25. Ríos-Aguilar, S., Merino, J.L.M., Sánchez, A.M., Valdivieso, Á.S.: Variation of the heartbeat and activity as an indicator of drowsiness at the wheel using a smartwatch. Int. J. Artif. Intell. Int. Multimedia 3(3), 96–100 (2015)

    Google Scholar 

  26. Li, G., Lee, B.-L., Chung, W.-Y.: Smartwatch-based wearable EEG system for driver drowsiness detection. IEEE Sens. J. 15(12), 7169–7180 (2015)

    Article  Google Scholar 

  27. Liu, L., Karatas, C., Li, H., Tan, S., Gruteser, M., Yang, J., Chen, Y., Martin, R.P.: Toward detection of unsafe driving with wearables. In: Proceedings of the 2015 Workshop on Wearable Systems and Applications. pp. 27–32, ACM: Florenz, Italy (2015)

    Google Scholar 

  28. Forster, B., Cavina-Pratesi, C., Aglioti, S.M., Berlucchi, G.: Redundant target effect and intersensory facilitation from visual-tactile interactions in simple reaction time. Exp. Brain Res. 143(4), 480–487 (2002)

    Article  Google Scholar 

  29. Bauer, M., Oostenveld, R., Fries, P.: Tactile stimulation accelerates behavioral responses to visual stimuli through enhancement of occipital gamma-band activity. Vision. Res. 49(9), 931–942 (2009)

    Article  Google Scholar 

  30. Richter, H., Ecker, R., Deisler, C., Butz, A.: HapTouch and the 2 + 1 state model: potentials of haptic feedback on touch based in-vehicle information systems. In: Proceedings of the 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications. ACM, Pittsburgh, PA, USA (2010)

    Google Scholar 

  31. Pitts, M.J., Burnett, G., Skrypchuk, L., Wellings, T., Attridge, A., Williams, M.A.: Visual-haptic feedback interaction in automotive touchscreens. Displays 33(1), 7–16 (2012)

    Article  Google Scholar 

  32. Pfleging, B., Broy, N., Kun, A.L.: An introduction to automotive user interfaces. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, San Jose, CA, USA (2016)

    Google Scholar 

  33. Balakrishnan, R., MacKenzie, I.S.: Performance differences in the fingers, wrist, and forearm in computer input control. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM (1997)

    Google Scholar 

  34. Utesch, M.C., Seifert, V., Prifti, L., Heininger, R., Krcmar, H.: The playful approach to teaching how to program: evidence by a case study. In: 20th International Conference on Interactive Collaborative Learning. Budapest, Hungary, Springer (2017)

    Google Scholar 

  35. van Teijlingen, E.R., Hundley, V.: The Importance of Pilot Studies. vol. 35, Social Research UPDATE, University of Surrey (2001)

    Google Scholar 

  36. Klebelsberg, D.: Verkehrspsychologie, vol. 308, Springer, Berlin, Heidelberg (1982)

    Book  Google Scholar 

  37. Cristian, F.: Probabilistic clock synchronization. Distrib. Comput. 3(3), 146–158 (1989)

    Article  Google Scholar 

  38. Field, A.: Discovering Statistics Using IBM SPSS Statistics. Sage Publications, London, Thousand Oaksm New Delhi, Singapore (2013)

    Google Scholar 

  39. Whelan, R.: Effective analysis of reaction time data. Psychol. Rec. 58(3), 475 (2008)

    Article  Google Scholar 

  40. Ratcliff, R.: Methods for dealing with reaction time outliers. Psychol. Bull. 114(3), 510 (1993)

    Article  Google Scholar 

  41. Dytham, C.: Choosing and Using Statistics: A Biologist’s Guide. 3rd edn, Wiley-Blackwell, Hoboken, NJ (2011)

    Google Scholar 

  42. Baayen, R.H., Milin, P.: Analyzing reaction times. Int. J. Psychol. Res. 3(2), 12–28 (2015)

    Article  Google Scholar 

  43. André, M.: The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci. Total Environ. 334–335, 73–84 (2004)

    Article  Google Scholar 

  44. Bakeman, R.: Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 37(3), 379–384 (2005)

    Article  Google Scholar 

  45. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 2nd edn, Lawrence Erlbaum Associates, Hillsdale, NJ, USA (1988)

    Google Scholar 

  46. Hoaglin, D.C., Iglewicz, B.: Fine-tuning some resistant rules for outlier labeling. J. Am. Stat. Assoc. 82(400), 1147–1149 (1987)

    Article  Google Scholar 

  47. Green, M.: How long does it take to stop? Methodological analysis of driver perception-brake times. Transp. Hum. Factors 2(3), 195–216 (2000)

    Article  Google Scholar 

  48. Ng, A.W.Y., Chan, A.H.S.: Finger response times to visual, auditory and tactile modality stimuli. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China (2012)

    Google Scholar 

  49. Griffiths, P.G., Gillespie, R.B.: Sharing control between humans and automation using haptic interface: primary and secondary task performance benefits. Hum. Factors J. Hum. Factors Ergon. Soc. 47(3), 574–590 (2005)

    Article  Google Scholar 

  50. Lefemine, G., Pedrini, G., Secchi, C., Tesauri, F., Marzani, S.: Virtual fixtures for secondary tasks. In: Human-Computer Interaction Symposium. Springer (2008)

    Google Scholar 

  51. MacLean, K.E.: Haptic interaction design for everyday interfaces. Rev. Hum. Factors Ergon. 4(1), 149–194 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Roman Trapickin for his contribution in the course of his student thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gottlieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gottlieb, M., Böhm, M., Utesch, M., Krcmar, H. (2019). Comparison of Reaction Times of a Visual and a Haptic Cue for Teaching Eco-Driving. In: Auer, M., Tsiatsos, T. (eds) The Challenges of the Digital Transformation in Education. ICL 2018. Advances in Intelligent Systems and Computing, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-030-11935-5_18

Download citation

Publish with us

Policies and ethics