Skip to main content

An Efficient Level Set Speed Function Based on Temperature Changes for Brain Tumor Segmentation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 66))

Abstract

In clinical routine, accurate segmentation of brain tumors from Magnetic Resonance Images (MRI) plays an important role in diagnostic; it is a challenging and difficult task as brain tumors have various appearance properties. In this study, a modified level set speed function for accurate brain tumor segmentation applied on thermal images to reinforce brain tumors segmentation using MRI is presented. Tumor cells have high temperature compared to healthy cells, due to the high metabolic activity of abnormal cells. To calculate the thermal image we have used Pennes BioHeat Transfer Equation (PBHTE) resolved using Finite Difference Method (FDM). By analyzing the tumor thermal profile, the temperature is higher in the tumor center and is reduced as we move to the tumor borders; we have used this physical phenomenon in level set function for tumor segmentation. The proposed approach is tested in synthetic MRI images containing tumors with different volumes and locations. The obtained results showed that \( 10.29\,\% \) of brain tumor segmented correctly by level set method in the thermal image as a tumor part, contrarily in T1 which is segmented as healthy tissue, the same for T1c and Flair with \( 4.32\,\% \) and \( 22.58\,\% \) respectively. Therefore, the temperature can play an important role to improve the accuracy of brain tumor segmentation in MRI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Helms, G., Kallenberg, K., Dechent, P.: Contrast-driven approach to intracranial segmentation using a combination of T2-and T1-weighted 3D MRI data sets. J. Magn. Reson. Imaging 24, 790–795 (2006)

    Article  Google Scholar 

  2. Jin, L., Min, L., Jianxin, W., Fangxiang, W., Tianming, L., Yi, P.: A survey of MRI based brain tumor segmentation methods. Tsinghua Sci. Technol. 19(6), 578–595 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), 97–129 (2013)

    Article  Google Scholar 

  4. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)

    Article  Google Scholar 

  5. Dvorak, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge), pp. 13–24 (2015)

    Google Scholar 

  6. Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin P.-M..: A convolutional neural network approach to brain tumor segmentation. In: Proceedings MICCAI BraTS (Brain Tumor Segmentation Challenge), pp. 29–33 (2015)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  8. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  9. Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: 3D brain tumor localization and parameter estimation using thermographic approach on GPU. J. Therm. Biol. 71, 52–61 (2018)

    Article  Google Scholar 

  10. Sadeghi-Goughari, M., Mojra, A.: Finite element modeling of haptic thermography: a novel approach for brain tumor detection during minimally invasive neurosurgery. J. Therm. Biol. 53, 53–65 (2015)

    Article  Google Scholar 

  11. Sadeghi-Goughari, M., Mojra, A.: Intraoperative thermal imaging of brain tumors using a haptic-thermal robot with application in minimally invasive neurosurgery. Appl. Therm. Eng. 91, 600–610 (2015)

    Article  Google Scholar 

  12. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  Google Scholar 

  13. Wissler, E.H.: Pennes’ 1948 paper revisited. J. Appl. Physiol. 85(1), 35–41 (1998)

    Article  Google Scholar 

  14. Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: Thermal effect analysis of brain tumor on simulated T1-weighted MRI images. In: International Conference on Intelligent Systems and Computer Vision (ISCV), April 2018

    Google Scholar 

  15. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  16. Lefohn, E.A., Kniss, M.J., Hansen, D.C., Whitaker, T.R.: A streaming narrow-band algorithm: interactive computation and visualization of level sets. IEEE Trans. Vis. Comput. Graphics. 10, 422–433 (2004)

    Article  Google Scholar 

  17. Cates, J.E., Lefohn, A.E., Whitaker, R.T.: GIST: An interactive, GPU-based level set segmentation tool for 3D medical images. Med. Image Anal. 8, 217–231 (2004)

    Article  Google Scholar 

  18. Galimzianova, A., Pernus, F., Likar, B., Spiclin, Z.: Robust estimation of unbalanced mixture models on samples with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2273–2285 (2015)

    Article  Google Scholar 

  19. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Med. Image Anal. 13(2), 297–311 (2009)

    Article  Google Scholar 

  20. Ahlgren, A., Wirestam, R., Ståhlberg, F., Knutsson, L.: Automatic brain segmentation using fractional signal modeling of a multiple flip angle, spoiled gradient-recalled echo acquisition. Magn. Reson. Mater. Phys. 27, 551–565 (2014)

    Article  Google Scholar 

  21. Nabizadeh, N., John, N., Wright, C.: Histogram-based gravitational optimization algorithm on single MR modality for automatic brain lesion detection and segmentation. Expert Syst. Appl. 41, 7820–7836 (2014)

    Article  Google Scholar 

  22. Aubert-Broche, B., Griffin, M., Pike, G.B., Evans, A.C., Collins, D.L.: Twenty new digital brain phantoms for creation of validation image data bases. IEEE Trans. Med. Imaging 25(11), 1410–1416 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the grant of the National Center for Scientific and Technical Research (CNRST - Morocco) (No. 13UH22016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Bousselham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A. (2019). An Efficient Level Set Speed Function Based on Temperature Changes for Brain Tumor Segmentation. In: Khoukhi, F., Bahaj, M., Ezziyyani, M. (eds) Smart Data and Computational Intelligence. AIT2S 2018. Lecture Notes in Networks and Systems, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-030-11914-0_13

Download citation

Publish with us

Policies and ethics