Data Analytics on Real-Time Air Pollution Monitoring System Derived from a Wireless Sensor Network

  • Walter FuertesEmail author
  • Alyssa Cadena
  • Jenny Torres
  • Diego Benítez
  • Freddy Tapia
  • Theofilos Toulkeridis
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)


Air pollution is a problem that causes adverse effects, which tends to interfere with human comfort, health or well-being, and that may cause serious environmental damage. In this regard, this study aims to analyze large data sets generated by real-time wireless sensor networks that determine different air pollutants. Business Intelligence and Data Mining techniques have been applied in order to support subsequent decision-making strategies. For normalization and modeling, we applied the CRISP-DM methodology using the Pentaho Data Integration. Then, the Sap Lumira has been applied in order to acquire models of tables and views. For the data analysis, R-Studio has been used. For validation, Clustering has been applied using the k-means algorithm by the Jambu method, where it has been proceeded to check the consistency of these, being later stored and debugged in PostgreSQL. Results demonstrate that the increase in air pollutants is directly related to the traffic hours, which may cause an increase of asthma or sick related syndrome in the population. This analysis may also serve as a source of information to authorities for improving public policies in such matter.


Air pollution Wireless sensor network Data analytics Data Mining Business Intelligence Pattern recognition 



The authors would like to express their gratitude for the financial support of the Ecuadorian Corporation for the Development of Research and the Academy (RED CEDIA) during the development of this study, under Project Grant CEPRA-XI-2017-13.


  1. 1.
    OMS (2018, May 2). Ambient (outdoor) air quality and health.–air-quality-and-health
  2. 2.
    Brauer, M., et al.: Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am. J. Respir. Crit. Care Med. 166(8), 1092–1098 (2002)CrossRefGoogle Scholar
  3. 3.
    MacIntyre, E.A., Gehring, U., Mölter, A., Fuertes, E., Klümper, C., Krämer, U., Koppelman, G.H.: Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ. Health Perspect. 122(1), 107–113 (2013)CrossRefGoogle Scholar
  4. 4.
    Larson, T.V., Koenig, J.Q.: Wood smoke: emissions and noncancer respiratory effects. Annu. Rev. Public Health 15(1), 133–156 (1994)CrossRefGoogle Scholar
  5. 5.
    Guan, W.J., et al.: Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388(10054), 1939–1951 (2016)CrossRefGoogle Scholar
  6. 6.
    Boubiche, S., Boubiche, D., Bilami, A., Toral-Cruz, H.: Big data challenges and data aggregation strategies in WSN. IEEE Access 6, 20558–20571 (2018)CrossRefGoogle Scholar
  7. 7.
    Ho, K., Hirai, H.W., Kuo, Y., Meng, H.M., Tsoi, K.K.F.: Indoor air monitoring platform and personal health reporting system: big data analytics for public health research. In: 2015 IEEE International Congress on Big Data, New York, NY, pp. 309–312 (2015)Google Scholar
  8. 8.
    Lopes, A.M., Abreu, P., Restivo, M.T.: Analysis and pattern identification on smart sensors data. In: 2017 4th Experiment@ International Conference (’17), Faro, pp. 97–98 (2017)Google Scholar
  9. 9.
    Chang, Y.S., Lin, K., Tsai, Y., Zeng, Y., Hung, C.: Big data platform for air quality analysis and prediction. In: 2018 27th Wireless and Optical Communication Conference, Hualien, pp. 1–3 (2018)Google Scholar
  10. 10.
    Ayyalasomayajula, H., Gabriel, E., Lindner, P., Price, D.: Air quality simulations using big data programming models. In: 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, pp. 182–184 (2016)Google Scholar
  11. 11.
    Chen, L., Xu, J., Zhang, L., Xue, Y.: Big data analytic based personalized air quality health advisory model. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, pp. 88–93 (2017)Google Scholar
  12. 12.
    Mehta, Y., Pai, M.M.M., Mallissery, S., Singh, S.: Cloud enabled air quality detection, analysis and prediction - a smart city application for smart health. In: 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, pp. 1–7 (2016)Google Scholar
  13. 13.
    Rios, L.G., Diguez, J.A.I.: Big data infrastructure for analyzing data generated by wireless sensor networks. In: 2014 IEEE International Congress on Big Data, Anchorage, AK, pp. 816–823 (2014)Google Scholar
  14. 14.
    Jardak, C., Riihijärvi, J., Oldewurtel, F., Mähönen, P.: Parallel processing of data from very large-scale wireless sensor networks. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing (HPDC 2010), pp. 787–794. ACM, New York (2010).
  15. 15.
    Fan, T., Zhang, X., Gao, F.: Cloud storage solution for WSN based on internet innovation union. In: Proceedings of the 2nd International Conference on Cloud-Computing and Super-Computing, vol. 22, pp. 164–169 (2013)Google Scholar
  16. 16.
    Yuan, H., Wang, J., An, Q., Li, S.: Research of WSN and big data analysis based continuous pulse monitoring system for efficient physical training. In: 2016 Future Technologies Conference (FTC), San Francisco, CA, pp. 1137–1145 (2016)Google Scholar
  17. 17.
    Anezakis, V.D., Mallinis, G., Iliadis, L., Demertzis, K.: Soft computing forecasting of cardiovascular and respiratory incidents based on climate change scenarios. In: 2018 IEEE Conference on Evolving and Adaptive Intelligent Systems, Rhodes, Greece, pp. 1–8 (2018)Google Scholar
  18. 18.
    Fotopoulou, E., Zafeiropoulos, A., Papaspyros, D., Hasapis, P., Tsiolis, G., Bouras, T., Mouzakatis, S., Zanetti, N.: Linked data analytics in interdisciplinary studies: the health impact of air pollution in urban areas. IEEE Access 4, 149–164 (2016)CrossRefGoogle Scholar
  19. 19.
    Sacha, D., Kraus, M., Bernard, J., Behrisch, M., Schreck, T., Asano, Y., Keim, D.A.: Somflow: guided exploratory cluster analysis with self-organizing maps and analytic provenance. IEEE Trans. Visual. Comput. Graph. 25, 120–130 (2018)CrossRefGoogle Scholar
  20. 20.
    Jambu, V., Provine, J., Ranganath, R., Rizvi, A.A.: U.S. Patent Application No. 15/391,697 (2018)Google Scholar
  21. 21.
    Guanochanga, B., Cachipuendo, R., Fuertes, W., Salvador, S., Benítez, D.S., Toulkeridis, T., Torres, J., Villacís, C., Tapia, F., Meneses, F.: Real-time air pollution monitoring systems using wireless sensor networks connected in a cloud-computing, wrapped up web services. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) 2018 Proceedings of the Future Technologies Conference (FTC). FTC 2018. Advances in Intelligent Systems and Computing, vol. 880. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Walter Fuertes
    • 1
    Email author
  • Alyssa Cadena
    • 1
  • Jenny Torres
    • 3
  • Diego Benítez
    • 2
  • Freddy Tapia
    • 1
  • Theofilos Toulkeridis
    • 1
    • 2
    • 3
  1. 1.Departamento de Ciencias de la Computación, Departamento de Seguridad y DefensaUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Colegio de Ciencias e Ingenierías “El Politécnico”Universidad San Francisco de Quito USFQQuitoEcuador
  3. 3.Departamento de Informática y Ciencias de la ComputaciónEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations