Self-configuring Intelligent Water Drops Algorithm for Software Project Scheduling Problem

  • Broderick CrawfordEmail author
  • Ricardo Soto
  • Gino Astorga
  • José Lemus
  • Agustín Salas-Fernández
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 918)


At present a large number exists of metaheuristics that can support some process in the industry; however, there is a great difficulty to be overcome before use, that is the adjustment of the parameters that they use. It is already known the significant impact that they have on their behavior the correct choice of their values. Given the importance that has the proper adjustment of the parameters, our work presents a self-adjusting alternative for a constructive metaheuristic called Intelligent Water Drops. To evaluate our proposal we solve the Software Project Scheduling Problem, obtaining very similar results and one case superior to the version with manual adjustment.


Intelligent water drops Project management Software Project Scheduling Problem 



Broderick Crawford is supported by grant CONICYT/FONDECYT/REGULAR 1171243 and Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455, Gino Astorga is supported by Postgraduate Grant, Pontificia Universidad Catolica de Valparaíso, 2015 and José Lemus is supported by INF-PUCV 2018.


  1. 1.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 54(1), 99–114 (2006)CrossRefGoogle Scholar
  2. 2.
    Alba, E., Chicano, J.F.: Software project management with GAs. Inf. Sci. 177(11), 2380–2401 (2007)CrossRefGoogle Scholar
  3. 3.
    Alijla, B.O., Lim, C.P., Wong, L.P., Khader, A.T., Al-Betar, M.A.: An ensemble of intelligent water drop algorithm for feature selection optimization problem. Appl. Soft Comput. 65, 531–541 (2018)CrossRefGoogle Scholar
  4. 4.
    Crawford, B., Soto, R., Astorga, G., Castro, C., Paredes, F., Misra, S., Rubio, J.M.: Solving the software project scheduling problem using intelligent water drops. Tehnički vjesnik 25(2), 350–357 (2018)Google Scholar
  5. 5.
    Crawford, B., Soto, R., Castro, C., Monfroy, E.: Extensible CP-based autonomous search. In: International Conference on Human-Computer Interaction, pp. 561–565. Springer (2011)Google Scholar
  6. 6.
    Crawford, B., Soto, R., Johnson, F., Misra, S., Paredes, F., Olguín, E.: Software project scheduling using the hyper-cube ant colony optimization algorithm. Tech. Gaz. 22(5), 1171–1178 (2015)Google Scholar
  7. 7.
    Crawford, B., Soto, R., Johnson, F., Monfroy, E., Paredes, F.: A max-min ant system algorithm to solve the software project scheduling problem. Expert Syst. Appl. 41(15), 6634–6645 (2014)CrossRefGoogle Scholar
  8. 8.
    Elsherbiny, S., Eldaydamony, E., Alrahmawy, M., Reyad, A.E.: An extended intelligent water drops algorithm for workflow scheduling in cloud computing environment. Egypt. Inform. J. 19(1), 33–55 (2018)CrossRefGoogle Scholar
  9. 9.
    Hamadi, Y., Monfroy, E., Saubion, F.: What is autonomous search? In: Hybrid Optimization, pp. 357–391. Springer (2011)Google Scholar
  10. 10.
    Kayvanfar, V., Husseini, S.M., Karimi, B., Sajadieh, M.S.: Bi-objective intelligent water drops algorithm to a practical multi-echelon supply chain optimization problem. J. Manufact. Syst. 44, 93–114 (2017)CrossRefGoogle Scholar
  11. 11.
    Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Prabha, D.R., Jayabarathi, T., Umamageswari, R., Saranya, S.: Optimal location and sizing of distributed generation unit using intelligent water drop algorithm. Sustain. Energy Technol. Assess. 11, 106–113 (2015)Google Scholar
  13. 13.
    Shah-Hosseini, H.: Intelligent water drops algorithm: a new optimization method for solving the multiple knapsack problem. Int. J. Intell. Comput. Cybern. 1(2), 193–212 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for generating good enumeration strategy blends in constraint programming. In: International Conference on Computational Science and Its Applications, pp. 607–617. Springer (2012)Google Scholar
  16. 16.
    Teymourian, E., Kayvanfar, V., Komaki, G.M., Zandieh, M.: Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem. Inf. Sci. 334, 354–378 (2016)CrossRefGoogle Scholar
  17. 17.
    Vega-Velázquez, M.Á., García-Nájera, A., Cervantes, H.: A survey on the software project scheduling problem. Int. J. Prod. Econ. 202, 145–161 (2018)CrossRefGoogle Scholar
  18. 18.
    Xiao, J., Ao, X.T., Tang, Y.: Solving software project scheduling problems with ant colony optimization. Comput. Oper. Res. 40(1), 33–46 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Broderick Crawford
    • 1
    Email author
  • Ricardo Soto
    • 1
  • Gino Astorga
    • 1
    • 2
  • José Lemus
    • 1
  • Agustín Salas-Fernández
    • 3
  1. 1.Pontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Universidad de ValparaísoValparaísoChile
  3. 3.Universidad Tecnológica de Chile INACAPSantiagoChile

Personalised recommendations