Skip to main content

A Review on Two Methods to Detect Spatio-Temporal Patterns in Wind Turbines

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This Chapter presents a review on two methods for the analysis of flow structures in wind turbines. These methods are higher order dynamic mode decomposition and spatio-temporal Koopman decomposition, which are highly efficient tools suitable for the detection of spatio-temporal patterns in complex flows. These two techniques have been applied to detect the main flow structures in a cross-flow wind turbine in turbulent regime, and in an horizontal wind turbine, which is laminar in the near field but transitioning to turbulence in the far field. Using these methods, a reduced number of traveling waves which are responsible for triggering the flow transition, are able to describe the aforementioned complex flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferrer E, Le Clainche S (2015) Flow scales in cross-flow turbines. In: Ferrer E, Montlaur A (eds) CFD for wind and tidal offshore turbines, Chap1. Springer Tracts in Mechanical Engineering, pp 1–11

    Google Scholar 

  2. Le Clainche S, Ferrer E (2018) A reduced order model to predict transient flows around straight bladed vertical axis wind turbines. Energies 11(3):566

    Article  Google Scholar 

  3. Ramos G, Beltrán V, Le Clainche S, Ferrer E, Vega JM (2018) Flow structures in the turbulent wake of a cross-flow wind turbine. In: AIAA SciTech forum, wind energy symposium, AIAA paper-2018-0253. https://doi.org/10.2514/6.2018-0253

  4. Le Clainche S, Mao X, Vega JM (2018) Traveling waves describing the wake of a wind turbine. Wind Energy (under review)

    Google Scholar 

  5. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  Google Scholar 

  6. Le Clainche S, Vega JM (2017) Higher order dynamic mode decomposition. SIAM J Appl Dyn Syst 16(2):882–925

    Article  MathSciNet  Google Scholar 

  7. Le Clainche S, Vega JM (2017) Spatio-temporal Koopman decomposition. Submitted to J Nonlinear Sci

    Google Scholar 

  8. Le Clainche S, Vega JM, Soria J (2017) Higher order dynamic mode decomposition for noisy experimental data: the flow structure of a zero-net-mass-flux jet. Exp Therm Fluid Sci 88:336–353

    Article  Google Scholar 

  9. Le Clainche S, Vega JM (2017) Higher order dynamic mode decomposition to identify flow patterns and extrapolation properties. Phys Fluids 29(8):084102

    Article  Google Scholar 

  10. Le Clainche S, Moreno R, Taylor P, Vega JM (2018) New robust method to study flight flutter testing. J Aircraft (in press)

    Google Scholar 

  11. Sirovich L (1987) Turbulence and the dynamic of coherent structures, parts I–III. Q Appl Math 45(3):561

    Article  Google Scholar 

  12. Tucker LR (1996) Some mathematical notes on three-mode factor analysis. Psikometrica 31:279–311

    Article  MathSciNet  Google Scholar 

  13. Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young L-S (eds) Lecture notes in mathematics. Springer, Berlin, pp 366–381

    Google Scholar 

  14. Ferrer E (2017) An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large Eddy simulations. J Comput Phys 348:754–775

    Article  MathSciNet  Google Scholar 

  15. Ferrer E, Willden RHJ (2010) A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations. Comput Fluids 46(1):224–230

    Article  MathSciNet  Google Scholar 

  16. Ferrer E, Willden RHJ (2012) A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes. J Comput Phys 231(21):7037–7056

    Article  MathSciNet  Google Scholar 

  17. Le Clainche S, Sastre F, Vega JM, Velazquez A (2017) Higher order dynamic mode decomposition applied to study flow structures in noisy PIV experimental data AIAA 2017-3304. In: Proceedings of 47th AIAA fluid dynamics conference. Denver, CO, USA, 5–9 June

    Google Scholar 

  18. Mao X, Sorensen J (2018) Far-wake meandering induced by atmospheric eddies in flow past a wind turbine. J Fluid Mech 846:190–209

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Le Clainche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Clainche, S., Vega, J.M., Mao, X., Ferrer, E. (2019). A Review on Two Methods to Detect Spatio-Temporal Patterns in Wind Turbines. In: Ferrer, E., Montlaur, A. (eds) Recent Advances in CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11887-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11887-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11886-0

  • Online ISBN: 978-3-030-11887-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics