Skip to main content

A High-Order Finite Volume Method for the Simulation of Phase Transition Flows Using the Navier–Stokes–Korteweg Equations

  • Chapter
  • First Online:
Book cover Recent Advances in CFD for Wind and Tidal Offshore Turbines

Abstract

In this work, we employ the Navier–Stokes–Korteweg system of equations for the simulation of phase transition flows. This system belongs to the diffuse interface models, in which both phases are separated by a non-zero thickness interface where the properties vary continuously. The key idea of these methods is the ability to use the same set of equations for the entire computational domain, regardless of the phase of the fluid. However, these methods lead to a system of equations with high-order derivatives, which are difficult to discretize and solve numerically. Here, we propose the use of a high-order Finite Volume method, FV-MLS, for the resolution of the Navier–Stokes–Korteweg equations. The method uses Moving Least Squares approximations for the direct and accurate discretization of higher-order derivatives, which is particularly suitable for simulations on unstructured meshes. In this work, we show two numerical examples in which the interface is set to interact with great changes in the properties, in order to demonstrate the robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annu Rev Fluid Mech 30:139–165

    Article  MathSciNet  Google Scholar 

  2. Korteweg DJ (1901) Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité consiérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences Exactes et Naturelles. Series II 6:1–24

    MATH  Google Scholar 

  3. Jamet D, Torres D, Brackbill JU (2002) On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method. J Comput Phys 182:262–276

    Article  Google Scholar 

  4. Diehl D (2007) Higher order schemes for simulation of compressible liquid-vapor flows with phase change. PhD thesis

    Google Scholar 

  5. Gómez H, Hughes TJR, Nogueira X, Calo VC (2010) Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput Methods Appl Mech Eng 199:1828–1840

    Article  MathSciNet  Google Scholar 

  6. Cueto-Felgueroso L, Colominas I (2008) High-order finite volume methods and multiresolution reproducing kernels. Arch Comput Methods Eng 15(2):185–228

    Article  MathSciNet  Google Scholar 

  7. Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2006) High order finite volume schemes on unstructured grids using Moving Least Squares construction, Application to shallow waters dynamics. Int J Numer Methods Eng 65:295–331

    Article  Google Scholar 

  8. Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196:4712–4736

    Article  MathSciNet  Google Scholar 

  9. Khelladi S, Nogueira X, Bakir F, Colominas I (2011) Toward a higher order unsteady finite volume solver based on reproducing kernel methods. Comput Methods Appl Mech Eng 200(29):2348–2362

    Article  MathSciNet  Google Scholar 

  10. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math. Comput. 37(155):141–158

    Article  MathSciNet  Google Scholar 

  11. Nogueira X, Ramírez L, Khelladi S, Chassaing J, Colominas I (2015) A high-order density-based finite volume method for the computation of all-speed flows. Comput Methods Appl Mech Eng 298:229–251

    Article  MathSciNet  Google Scholar 

  12. van der Waals JD (1873) On the continuity of the gaseous and liquid states. PhD thesis

    Google Scholar 

  13. van der Waals JD (1979) The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J Stat Phys (Reprinted) 20:197–244

    Article  Google Scholar 

  14. Serrin J (2008) The area rule for simple fluid phase transitions. J Elast 90:129–159

    Article  MathSciNet  Google Scholar 

  15. Rusanov VV (1962) The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput Math Math Phys 1(2):304–320

    Article  Google Scholar 

  16. Li X-S, Gu C-W (2013) Mechanism of Roe-type schemes for all-speed flows and its application. Comput Fluids 86:56–70

    Article  MathSciNet  Google Scholar 

  17. Liu J, Gómez H, Evans JA, Hughes TJR, Landis CM (2013) Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isotermal Navier-Stokes-Korteweg equations. J Comput Phys 248:47–86

    Article  MathSciNet  Google Scholar 

  18. Ramírez L, Nogueira X, Khelladi S, Chassaing J-C, Colominas I (2014) A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 278:883–901

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez, A., Ramírez, L., Nogueira, X., Navarrina, F., Khelladi, S. (2019). A High-Order Finite Volume Method for the Simulation of Phase Transition Flows Using the Navier–Stokes–Korteweg Equations. In: Ferrer, E., Montlaur, A. (eds) Recent Advances in CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11887-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11887-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11886-0

  • Online ISBN: 978-3-030-11887-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics