Skip to main content

Optimization Algorithms Applied to Anaerobic Digestion Process of Olive Mill Wastewater

Literature Review

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (AI2SD 2018)

Abstract

Agriculture has always been a strategic sector for socioeconomic development in Morocco. Indeed, the green Morocco plan aims to extend the area of olive trees and set up new modern crushing plants in order to increase productivity and competitiveness of the olive industry. Olive mill solid waste (OMSW) and olive mill wastewater (OMW) are two types of waste generated by this industry. These wastes are rich in organic matter, but their discharge without pretreatment in nature has a toxic effect on the natural environment (soil, air, and water) because of their high acidity due to their polyphenol content.

White Biotechnology, particularly anaerobic digestion (AD), remains an effective way that uses the effluents mentioned above as a raw material for producing a renewable energy such as biogas (CH4). The aim of this work is to present a literature review of anaerobic digestion process, its influencing parameters as well as optimization algorithms used for optimizing the process and predicting gas yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dareioti, M.A., Dokianakis, S.N., Stamatelatou, K., Zafiri, C., Kornaros, M.: Exploitation of olive mill wastewater and liquid cow manure for biogas production. Waste Manag. 30(10), 1841–1848 (2010)

    Article  Google Scholar 

  2. Etude sur les potentiels de biomasse pour la région Souss-Massa-Drâa et la province d’Essaouira (2010)

    Google Scholar 

  3. Elamin, P.A.M.: Potentiel des déchets organiques et valorisation énergétique au Maroc

    Google Scholar 

  4. Ministère de l’agriculture, de la pêche maritime, du développement rural et des eaux et des forêts. http://www.agriculture.gov.ma/pages/acces-fillieres/filiere-oleicole

  5. Idrissi, M.: Trituration des olives : comment arrêter la pollution par les margines (2016). http://www.leseco.ma/415-regions/41629-trituration-des-olives-comment-arreter-la-pollution-par-les-margines.html

  6. Benyahia, N., Zein, K.: Analyse des problèmes de l’industrie de l’huile d’olive et solutions récemment développées, Sustain. Bus. Assoc. Lausanne, pp. 1–8 (2003)

    Google Scholar 

  7. Examen national de l’export vert du Maroc : produits oléicoles, romarin et thym (2017)

    Google Scholar 

  8. Moletta, R.: La méthanisation. Tec et Doc (2015)

    Google Scholar 

  9. Béline, F., Girault, R., Peu, P., Trémier, A., Téglia, C., Dabert, P.: Enjeux et perspectives pour le développement de la méthanisation agricole en France. Sci. Eaux Territ. 2, 34–43 (2012)

    Google Scholar 

  10. Robles, A., Lucas, R., de Cienfuegos, G.A., Gálvez, A.: Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds. Bioresour. Technol. 74(3), 217–221 (2000)

    Article  Google Scholar 

  11. Hamdi, M.: Future prospects and constraints of olive mill wastewaters use and treatment: a review. Bioprocess. Eng. 8(5–6), 209–214 (1993)

    Article  Google Scholar 

  12. Beccari, M., Majone, M., Torrisi, L.: Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Sci. Technol. 38(4–5), 53–60 (1998)

    Article  Google Scholar 

  13. Lesage-Meessen, L., et al.: Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 75(4), 501–507 (2001)

    Article  Google Scholar 

  14. Martinez-Garcia, G., Johnson, A.C., Bachmann, R.T., Williams, C.J., Burgoyne, A., Edyvean, R.G.J.: Two-stage biological treatment of olive mill wastewater with whey as co-substrate. Int. Biodeterior. Biodegradation 59(4), 273–282 (2007)

    Article  Google Scholar 

  15. Blika, P.S., et al.: Pretreatment of olive mill wastewater in a fungal trickling filter In: Proceedings of the Third International Conference on Water Resources in Mediterranean Basin, Tripoli, Lebanon (2006)

    Google Scholar 

  16. Fountoulakis, M.S., Dokianakis, S.N., Kornaros, M.E., Aggelis, G.G., Lyberatos, G.: Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 36(19), 4735–4744 (2002)

    Article  Google Scholar 

  17. Lettinga, G., et al.: High-rate anaerobic waste-water treatment using the UASB reactor under a wide range of temperature conditions. Biotechnol. Genet. Eng. Rev. 2(1), 253–284 (1984)

    Article  Google Scholar 

  18. Ziganshin, A.M., Liebetrau, J., Pröter, J., Kleinsteuber, S.: Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl. Microbiol. Biotechnol. 97(11), 5161–5174 (2013)

    Article  Google Scholar 

  19. Labatut, R.A., Angenent, L.T., Scott, N.R.: Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res. 53, 249–258 (2014)

    Article  Google Scholar 

  20. Labatut, R.A., Gooch, C.A.: Monitoring of anaerobic digestion process to optimize performance and prevent system failure (2014)

    Google Scholar 

  21. Mackie, R.I., Bryant, M.P.: Anaerobic digestion of cattle waste at mesophilic and thermophilic temperatures. Appl. Microbiol. Biotechnol. 43(2), 346–350 (1995)

    Article  Google Scholar 

  22. Varel, V.H., Isaacson, H.R., Bryant, M.P.: Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33(2), 298–307 (1977)

    Google Scholar 

  23. Borja, R., Martin, A., Banks, C.J., Alonso, V., Chica, A.: A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environ. Pollut. 88(1), 13–18 (1995)

    Article  Google Scholar 

  24. Wijekoon, K.C., Visvanathan, C., Abeynayaka, A.: Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour. Technol. 102(9), 5353–5360 (2011)

    Article  Google Scholar 

  25. Lee, D.-J., et al.: Effect of volatile fatty acid concentration on anaerobic degradation rate from field anaerobic digestion facilities treating food waste leachate in South Korea. J. Chem. 2015, 9 (2015)

    Google Scholar 

  26. Siegert, I., Banks, C.: The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 40(11), 3412–3418 (2005)

    Article  Google Scholar 

  27. Beccari, M., Bonemazzi, F., Majone, M., Riccardi, C.: Interaction between acidogenesis and methanogenesis in the anaerobic treatment of olive oil mill effluents. Water Res. 30(1), 183–189 (1996)

    Article  Google Scholar 

  28. Wong, Y.-S., Teng, T.T., Ong, S.-A., Norhashimah, M., Rafatullah, M., Lee, H.-C.: Anaerobic acidogenesis biodegradation of palm oil mill effluent using suspended closed anaerobic bioreactor (SCABR) at mesophilic temperature. Procedia Environ. Sci. 18, 433–441 (2013)

    Article  Google Scholar 

  29. Mechichi, T., Sayadi, S.: Evaluating process imbalance of anaerobic digestion of olive mill wastewaters. Process Biochem. 40(1), 139–145 (2005)

    Article  Google Scholar 

  30. Veeken, A., Kalyuzhnyi, S., Scharff, H., Hamelers, B.: Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 126(12), 1076–1081 (2000)

    Article  Google Scholar 

  31. Ağdağ, O.N., Sponza, D.T.: Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochem. 40(5), 1871–1879 (2005)

    Article  Google Scholar 

  32. Zhang, S.J., Liu, N.R., Zhang, C.X.: Study on the performance of modified UASB process treating sewage. Adv. Mater. Res. 610, 2174–2178 (2013)

    Google Scholar 

  33. Mattocks, R.: Understanding biogas generation (1984)

    Google Scholar 

  34. Trnovec, W., Britz, T.J.: Influence of organic loading rate and hydraulic retention time on the efficiency of a UASB bioreactor treating a canning factory effluent. Water S. A. 24(2), 147–152 (1998)

    Google Scholar 

  35. Babaee, A., Shayegan, J.: Effect of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetables waste. In: World Renewable Energy Congress-Sweden, 8–13 May 2011, Linköping Sweden, no. 57, pp. 411–417 (2011)

    Google Scholar 

  36. Li, Y., Park, S.Y., Zhu, J.: Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 15(1), 821–826 (2011)

    Article  Google Scholar 

  37. Yen, H.-W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98(1), 130–134 (2007)

    Article  Google Scholar 

  38. Habiba, L., Hassib, B., Moktar, H.: Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour. Technol. 100(4), 1555–1560 (2009)

    Article  Google Scholar 

  39. Lin, J., et al.: Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23(8), 1403–1408 (2011)

    Article  Google Scholar 

  40. Hernández-Berriel, M.C., Márquez-Benavides, L., González-Pérez, D.J., Buenrostro-Delgado, O.: The effect of moisture regimes on the anaerobic degradation of municipal solid waste from Metepec (Mexico). Waste Manag. 28, S14–S20 (2008)

    Article  Google Scholar 

  41. Fujishima, S., Miyahara, T., Noike, T.: Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production. Water Sci. Technol. 41(3), 119–127 (2000)

    Article  Google Scholar 

  42. Munasinghe, R.: Effect of hydraulic retention time on landfill leachate and gas characteristics. University of British Columbia (1997)

    Google Scholar 

  43. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000)

    Article  Google Scholar 

  44. Bro, R., Smilde, A.K.: Principal component analysis. Anal. Methods 6(9), 2812–2831 (2014)

    Article  Google Scholar 

  45. Gen, M., Cheng, R., Lin, L.: Network models and optimization: multiobjective genetic algorithm approach. Springer Science & Business Media (2008)

    Google Scholar 

  46. Batstone, D.J., et al.: The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 45(10), 65–73 (2002)

    Article  Google Scholar 

  47. Akkurt, S., Tayfur, G., Can, S.: Fuzzy logic model for the prediction of cement compressive strength. Cem. Concr. Res. 34(8), 1429–1433 (2004)

    Article  Google Scholar 

  48. Qdais, H.A., Hani, K.B., Shatnawi, N.: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 54(6), 359–363 (2010)

    Article  Google Scholar 

  49. Kana, E.B.G., Oloke, J.K., Lateef, A., Adesiyan, M.O.: Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 46, 276–281 (2012)

    Article  Google Scholar 

  50. Li, H., et al.: Estimating the fates of C and N in various anaerobic codigestions of manure and lignocellulosic biomass based on artificial neural networks. Energy Fuels 30(11), 9490–9501 (2016)

    Article  Google Scholar 

  51. Tay, J.-H., Zhang, X.: A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 34(11), 2849–2860 (2000)

    Article  Google Scholar 

  52. Parker, W.J.: Application of the ADM1 model to advanced anaerobic digestion. Bioresour. Technol. 96(16), 1832–1842 (2005)

    Article  Google Scholar 

  53. Boubaker, F., Ridha, B.C.: Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1). Bioresour. Technol. 99(14), 6565–6577 (2008)

    Article  Google Scholar 

  54. Turkdogan-Aydınol, F.I., Yetilmezsoy, K.: A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J. Hazard. Mater. 182(1–3), 460–471 (2010)

    Article  Google Scholar 

  55. Puñal, A., Palazzotto, L., Bouvier, J.C., Conte, T., Steyer, J.P.: Automatic control of volatile fatty acids in anaerobic digestion using a fuzzy logic based approach. Water Sci. Technol. 48(6), 103–110 (2003)

    Article  Google Scholar 

  56. Rao, K.R., Srinivasan, T., Venkateswarlu, C.: Mathematical and kinetic modeling of biofilm reactor based on ant colony optimization. Process Biochem. 45(6), 961–972 (2010)

    Article  Google Scholar 

  57. Garlapati, V.K., Banerjee, R.: Evolutionary and swarm intelligence-based approaches for optimization of lipase extraction from fermented broth. Eng. Life Sci. 10(3), 265–273 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Echarrafi Khadija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khadija, E., Manale, Z., Ibtisam, E.H., Mounia, E.H. (2019). Optimization Algorithms Applied to Anaerobic Digestion Process of Olive Mill Wastewater. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and Computing, vol 913. Springer, Cham. https://doi.org/10.1007/978-3-030-11881-5_8

Download citation

Publish with us

Policies and ethics