Skip to main content

A Cellular Automata Model of Spatio-Temporal Distribution of Species

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (AI2SD 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 913))

  • 406 Accesses

Abstract

Cellular automata (CA) are discrete models used in several studies due to the capacity to simulate dynamic systems and analyze their behavior. One of the applications of CA in ecology is in the analysis of the spatial distribution of species, where simulation models are created in order to study the response of ecological systems to different kinds of exogenous or endogenous perturbations. In this study we describe an implementation of a cellular automata model able to incorporate environmental data from different sources. To the user is given the power to produce and analyze different scenarios by combining the available variables at will. We present a case study where, departing from a generalized additive model, a possible explanation is given for the distribution of two haplotypes of honeybees along Iberian Peninsula. The results of our model are compared and discussed at the light of the real data collected on the terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan, A.R.: Replacement of some graphics routines with the help of 2D cellular Automata Algorithms for faster graphics operations (2015)

    Google Scholar 

  2. Cissé, B., El Yacoubi, S., Gourbiére, S.: A cellular automaton model for the transmission of Chagas disease in heterogeneous landscape and host community. Appl. Math. Model. 40(2), 782–794 (2016)

    Article  MathSciNet  Google Scholar 

  3. Markham, C.G.: Seasonality of precipitation in the United States. Ann. Assoc. Am. Geogr. 60(3), 593–597 (1970)

    Article  Google Scholar 

  4. Burks, C., Farmer, D.: Towards modeling DNA sequences as automata. Physica D: Nonlinear Phenomena 10(1–2), 157–167 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canovas, F., De la Rúa, P., Serrano, J., Galián, J.: Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae). J. Zool. Syst. Evol. Res. 46(1), 24–30 (2008)

    Google Scholar 

  6. Keshtkar, H., Voigt, W.: Potential impacts of climate and landscape fragmentation changes on plant distributions: coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecol. Inform. 32, 145–155 (2016)

    Article  Google Scholar 

  7. Régnière, J., Saint-Amant, R., Béchard, A.: BioSim: optimizing pest control efficacy in forestry. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre. Branching out (3), 2 (2003)

    Google Scholar 

  8. Conway, J.: The game of life. Sci. Am. 223(4), 4 (1970)

    Google Scholar 

  9. Von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)

    Google Scholar 

  10. Bhattacharjee, K., Naskar, N., Roy, S., Das, S.: A survey of cellular automata: types, dynamics, non-uniformity and applications. arXiv preprint arXiv:1607.02291 (2016)

  11. Pinto, N., Antunes, A.P., Roca, J.: Applicability and calibration of an irregular cellular automata model for land use change. Comput. Environ. Urban Syst. 65, 93–102 (2017)

    Article  Google Scholar 

  12. Linh, O.T.M., Huong, L.H., Quy, L.T., Huy, N.C., Hiep, H.X.: Simulation the BPH spread with the impact of their natural enemies based on Cellular Automata and Predator-Prey model. In: 2016 Eighth International Conference on Knowledge and Systems Engineering (KSE), pp. 121–126. IEEE (2016)

    Google Scholar 

  13. Hewitt, R., Diaz-Pacheco, J.: Stable models for metastable systems? Lessons from sensitivity analysis of a Cellular Automata urban land use model. Comput. Environ. Urban Syst. 62, 113–124 (2017)

    Article  Google Scholar 

  14. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965–1978 (2005)

    Article  Google Scholar 

  15. Engler, R., Guisan, A.: MigClim: predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15(4), 590–601 (2009)

    Article  Google Scholar 

  16. Mitra, S., Das, S., Chaudhuri, P.P., Nandi, S.: Architecture of a VLSI chip for modelling amino acid sequence in proteins. In: Proceedings of the Ninth International Conference on VLSI Design, pp. 316-317. IEEE (1996)

    Google Scholar 

  17. Palmate, S.S.: Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated Cellular Automata and Markov Chain approach. Appl. Geogr. 82, 11–23 (2017)

    Article  Google Scholar 

  18. Ghosh, S., Bachhar, T., Maiti, N.S., Mitra, I., Chaudhuri, P.P.: Theory and application of equal length cycle cellular automata (ELCCA) for enzyme classification. In: International Conference on Cellular Automata, pp. 46–57. Springer, Heidelberg (2010)

    Google Scholar 

  19. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holko, A., Mȩdrek, M., Pastuszak, Z., Phusavat, K.: Epidemiological modeling with a population density map-based cellular automata simulation system. Expert Syst. Appl. 48, 1–8 (2016)

    Article  Google Scholar 

  21. Barbosa, N.P., Ferreira, J.A., Nascimento, C.A., Silva, F.A., Carvalho, V.A., Xavier, E.R., Cardoso, A.V.: Prediction of future risk of invasion by Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae) in Brazil with cellular automata. Ecol. Indic. 92, 30–39 (2018)

    Article  Google Scholar 

  22. Mahmoud, H., Chulahwat, A.: A probabilistic cellular automata framework for assessing the impact of WUI fires on communities. Procedia Eng. 198, 1111–1122 (2017)

    Article  Google Scholar 

  23. Guimapi, R.Y., Mohamed, S.A., Okeyo, G.O., Ndjomatchoua, F.T., Ekesi, S., Tonnang, H.E.: Modeling the risk of invasion and spread of Tuta absoluta in Africa. Ecol. Complex. 28, 77–93 (2016)

    Article  Google Scholar 

  24. Pereira, F.M.M., Schimit, P.H.T.: Dengue fever spreading based on probabilistic cellular automata with two lattices. Phys. A Stat. Mech. Appl. 499, 75–87 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Bioco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bioco, J., Silva, J., Canovas, F., Fazendeiro, P. (2019). A Cellular Automata Model of Spatio-Temporal Distribution of Species. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and Computing, vol 913. Springer, Cham. https://doi.org/10.1007/978-3-030-11881-5_11

Download citation

Publish with us

Policies and ethics