Skip to main content

Fuzzy TOPSIS with Coherent Measure: Applied to a Closed Loop Agriculture Supply Chain

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) (AI2SD 2018)

Abstract

Fuzzy logic has been widely used combined with Multi Criteria Decision Making techniques in different application. Here we propose to aggregate fuzzy opinions with a mathematical model, in order to minimize discordances. An illustrative example treating closed loop agriculture Supply Chain is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortuño, M.T.: Multi-criteria Decision Analysis (MCDA). In: Encyclopedia of Sciences and Religions, p. 1376. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  2. Zavadskas, E.K., Turskis, Z., Kildienė, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)

    Article  Google Scholar 

  3. Chen, C.-T., Lin, C.-T., Huang, S.-F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 102, 289–301 (2006)

    Article  Google Scholar 

  4. Chen, K.-H., Liao, C.-N., Wu, L.-C.: A selection model to logistic centers based on TOPSIS and MCGP methods: the case of airline industry. https://www.hindawi.com/journals/jam/2014/470128/

  5. Hsueh, J.-T., Lin, C.-Y.: Integrating the AHP and TOPSIS decision processes for evaluating the optimal collection strategy in reverse logistic for the TPI. Int. J. Green Energy 14, 1209–1220 (2017)

    Article  Google Scholar 

  6. Mahdevari, S., Shahriar, K., Esfahanipour, A.: Human health and safety risks management in underground coal mines using fuzzy TOPSIS. Sci. Total Environ. 488–489, 85–99 (2014)

    Article  Google Scholar 

  7. Taylan, O., Zytoon, M.A., Morfeq, A., Al-Hmouz, R., Herrera-Viedma, E.: Workplace assessment by fuzzy decision tree and TOPSIS methodologies to manage the occupational safety and health performance. J. Intell. Fuzzy Syst. 33, 1209–1224 (2017)

    Article  Google Scholar 

  8. Kaya, B.Y., Dağdeviren, M.: Selecting occupational safety equipment by MCDM approach considering universal design principles. Hum. Factors Ergon. Manuf. Serv. Ind. 26, 224–242 (2016)

    Article  Google Scholar 

  9. Rezaian, S., Jozi, S.A.: Health-safety and environmental risk assessment of refineries using of multi criteria decision making method. APCBEE Procedia. 3, 235–238 (2012)

    Article  Google Scholar 

  10. Turgut, Z.K., Tolga, A.Ç.: Fuzzy MCDM methods in sustainable and renewable energy alternative selection: fuzzy VIKOR and fuzzy TODIM. In: Energy Management—Collective and Computational Intelligence with Theory and Applications, pp. 277–314. Springer, Cham (2018)

    Google Scholar 

  11. Büyüközkan, G., Karabulut, Y., Güler, M.: Strategic renewable energy source selection for turkey with hesitant fuzzy MCDM method. In: Energy Management—Collective and Computational Intelligence with Theory and Applications, pp. 229–250. Springer, Cham (2018)

    Google Scholar 

  12. Majumder, P., Saha, A.K.: Development of financial liability index for hydropower plant with MCDM and neuro-genetic models. In: Application of Geographical Information Systems and Soft Computation Techniques in Water and Water Based Renewable Energy Problems, pp. 71–105. Springer, Singapore (2018)

    Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  14. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)

    Article  MathSciNet  Google Scholar 

  15. Chen, C.-T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114, 1–9 (2000)

    Article  Google Scholar 

  16. Lee, H.-S.: Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets Syst. 132, 303–315 (2002)

    Article  MathSciNet  Google Scholar 

  17. USC of LM: What it’s all about–purpose, objectives, programs, policies. The Council (1999)

    Google Scholar 

  18. Rao, P.: Greening of suppliers/in-bound logistics—in the South East Asian context. In: Sarkis, J. (ed.) Greening the Supply Chain, pp. 189–204. Springer, London (2006)

    Chapter  Google Scholar 

  19. Gupta, S.M., Ilgin, M.A.: Multiple Criteria Decision Making Applications in Environmentally Conscious Manufacturing and Product Recovery. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  20. Zeleny, M. (ed.): MCDM: Past Decade and Future Trends: A Source Book of Multiple Criteria Decision Making. JAI Press, Greenwich (1985)

    Google Scholar 

  21. Tarrant, J.R.: Tarrant: Agricultural Geography. Wiley, New York (1973)

    Google Scholar 

  22. Gasson, R.: Goals and values of farmers. J. Agric. Econ. 24, 521–542 (1973)

    Article  Google Scholar 

  23. Yemshanov, D., Koch, F.H., Riitters, K.H., McConkey, B., Huffman, T., Smith, S.: Assessing land clearing potential in the Canadian agriculture–forestry interface with a multi-attribute frontier approach. Ecol. Indic. 54, 71–81 (2015)

    Article  Google Scholar 

  24. Al-Juaidi, A.E., Kaluarachchi, J.J., Kim, U.: Multi-criteria decision analysis of treated wastewater use for agriculture in water deficit regions1. JAWRA J. Am. Water Resour. Assoc. 46, 395–411 (2010)

    Article  Google Scholar 

  25. Chen, Y., Khan, S., Paydar, Z.: To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrig. Drain. 59, 174–188 (2010)

    Google Scholar 

  26. Benke, K.K., Pelizaro, C., Lowell, K.E.: Uncertainty in multi-criteria evaluation techniques when used for land suitability analysis. In: Crop Modeling and Decision Support, pp. 291–298. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Zolekar, R.B., Bhagat, V.S.: Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Comput. Electron. Agric. 118, 300–321 (2015)

    Article  Google Scholar 

  28. Ahmed, G.B., Shariff, A.R.M., Balasundram, S.K., bin Abdullah, A.F.: Agriculture land suitability analysis evaluation based multi criteria and GIS approach. IOP Conf. Ser. Earth Environ. Sci. 37, 012044 (2016)

    Article  Google Scholar 

  29. Aldababseh, A., Temimi, M., Maghelal, P., Branch, O., Wulfmeyer, V.: Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 10, 803 (2018)

    Article  Google Scholar 

  30. Sinha, S., Tripathi, N.K.: Hybrid satellite agriculture drought indices: a multi criteria approach to improve crop insurance. In: 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1–5 (2016)

    Google Scholar 

  31. Petkovics, I., Simon, J., Petkovics, Á., Čović, Z.: Selection of unmanned aerial vehicle for precision agriculture with multi-criteria decision making algorithm. In: 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), pp. 000151–000156 (2017)

    Google Scholar 

  32. Romero, C., Rehman, T.: Multiple Criteria Analysis for Agricultural, vol. 11, 2nd edn. Elsevier Science, Amsterdam, Boston (2003)

    Google Scholar 

  33. Bausch, J.C., Bojórquez-Tapia, L., Eakin, H.: Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustain. Sci. 9, 303–319 (2014)

    Article  Google Scholar 

  34. Riesgo, L., Gallego-Ayala, J.: Multicriteria analysis of olive farms sustainability: an application of TOPSIS models. In: Handbook of Operations Research in Agriculture and the Agri-Food Industry, pp. 327–353. Springer, New York (2015)

    Chapter  Google Scholar 

  35. López, J.C.L., Carrillo, P.A.Á., Valenzuela, O.A.: A multicriteria group decision model for ranking technology packages in agriculture. In: Soft Computing for Sustainability Science, pp. 137–161. Springer, Cham (2018)

    Google Scholar 

  36. Berbel, J., Bournaris, T., Manos, B., Matsatsinis, N., Viaggi, D. (eds.): Multicriteria Analysis in Agriculture: Current Trends and Recent Applications. Springer International Publishing (2018)

    Google Scholar 

  37. Quinn, B., Schiel, K., Caruso, G.: Mapping uncertainty from multi-criteria analysis of land development suitability, the case of Howth. Dublin. J. Maps. 11, 487–495 (2015)

    Article  Google Scholar 

  38. Mosadeghi, R., Warnken, J., Tomlinson, R., Mirfenderesk, H.: Uncertainty analysis in the application of multi-criteria decision-making methods in Australian strategic environmental decisions. J. Environ. Plan. Manag. 56, 1097–1124 (2013)

    Article  Google Scholar 

  39. Hamsa, K.R., Veerabhadrappa, B.: Review on decision-making under risk and uncertainty in agriculture. Econ. Aff. 62, 447–453 (2017)

    Article  Google Scholar 

  40. Cancian, F.: Risk and uncertainty in agricultural decision making. Risk Uncertain. Agric. Decis. Mak., 161–176 (1980). Ch. (7)

    Google Scholar 

  41. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  42. Durbach, I.N., Stewart, T.J.: Modeling uncertainty in multi-criteria decision analysis. Eur. J. Oper. Res. 223, 1–14 (2012)

    Article  MathSciNet  Google Scholar 

  43. Skalna, I., Rębiasz, B., Gaweł, B., Basiura, B., Duda, J., Opiła, J., Pełech-Pilichowsk, T.: Advances in Fuzzy Decision Making - Theory and Practice. Springer International Publishing (2015)

    Google Scholar 

  44. Al-Kloub, B., Al-Shemmeri, T., Pearman, A.: The role of weights in multi-criteria decision aid, and the ranking of water projects in Jordan. Eur. J. Oper. Res. 99, 278–288 (1997)

    Article  Google Scholar 

  45. Zardari, N.H., Ahmed, K., Shirazi, S.M., Yusop, Z.B.: Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Springer International Publishing (2015)

    Google Scholar 

  46. Hwang, C.-L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Springer, Heidelberg (1981)

    Book  Google Scholar 

  47. Evans, G.W.: Multiple Criteria Decision Analysis for Industrial Engineering: Methodology and Applications. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  48. Yuexin, Y.: Efficiency measurement of agricultural mechanization in China based on DEA-TOPSIS models. World Autom. Congr. 2012, 1–4 (2012)

    Google Scholar 

  49. Yuexin, Y.: Evolution analysis of agricultural mechanization in Jilin province based on TOPSIS methodology. World Autom. Congr. 2012, 1–4 (2012)

    Google Scholar 

  50. Budianto, A.E., Yunus, E.P.A.: Expert system to optimize the best goat selection using topsis: decision support system. In: 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT), pp. 1–5 (2017)

    Google Scholar 

  51. Papathanasiou, J., Ploskas, N., Bournaris, T., Manos, B.: A decision support system for multiple criteria alternative ranking using TOPSIS and VIKOR: a case study on social sustainability in agriculture. In: Decision Support Systems VI - Addressing Sustainability and Societal Challenges, pp. 3–15. Springer, Cham (2016)

    Google Scholar 

  52. Xiao, C., Shao, D., Yang, F.: Improved TOPSIS method and its application on initial water rights allocation in the watershed. In: Information Computing and Applications, pp. 583–592. Springer, Heidelberg (2011)

    Google Scholar 

  53. Yal, G.P., Akgün, H.: Landfill site selection utilizing TOPSIS methodology and clay liner geotechnical characterization: a case study for Ankara. Turkey. Bull. Eng. Geol. Environ. 73, 369–388 (2014)

    Article  Google Scholar 

  54. Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A.A., Ghorbani, M.A., Shahbazi, F.: Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma 310, 178–190 (2018)

    Article  Google Scholar 

  55. Tan, Y., Cai, Z., Qi, H.: A process-based performance analysis for closed-loop agriculture supply Chain. In: 2010 International Conference on Intelligent System Design and Engineering Application, pp. 145–149 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Alaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Alaoui, M., Ben-Azza, H., El Yassini, K. (2019). Fuzzy TOPSIS with Coherent Measure: Applied to a Closed Loop Agriculture Supply Chain. In: Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2018). AI2SD 2018. Advances in Intelligent Systems and Computing, vol 911. Springer, Cham. https://doi.org/10.1007/978-3-030-11878-5_12

Download citation

Publish with us

Policies and ethics