Skip to main content

\(\phi ^4\) Solitary Waves in a Parabolic Potential: Existence, Stability, and Collisional Dynamics

  • Chapter
  • First Online:

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 26))

Abstract

We explore a \(\phi ^4\) model with an added external parabolic potential term. This term dramatically alters the spectral properties of the system. We identify single and multiple kink solutions and examine their stability features; importantly, all of these stationary structures turn out to be unstable. We complement these with a dynamical study of the evolution of a single kink in the trap, as well as of the scattering of kink and antikink solutions of the model. We observe that some of the key characteristics of kink-antikink collisions, such as the critical velocity and the multi-bounce windows, are sensitively dependent on the trap strength parameter, as well as the initial displacement of the kink and antikink.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Although the BEC example is simply of motivating nature, it turns out that in that setting \(\Omega \) plays the role of longitudinal to transverse trapping, hence to achieve effective one-dimensionality of the system the condition \(\Omega \ll 1\) needs to be enforced. This is what motivates our selection here too.

References

  1. J. Cuevas-Maraver, P.G. Kevrekidis, F. Williams (eds.), The sine-Gordon Model and Its Applications (Springer, Heidelberg, 2014)

    MATH  Google Scholar 

  2. T.I. Belova, A.E. Kudryavtsev, Phys. Usp. 40, 359 (1997)

    Article  ADS  Google Scholar 

  3. O.M. Braun, Yu.S. Kivshar, The Frenkel-Kontorova Model, Concepts, Methods and Applications (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  4. S.N. Behera, A. Khare, Pramana 15, 245 (1980)

    Article  ADS  Google Scholar 

  5. Y.M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982). [In Russian]

    Google Scholar 

  6. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  7. P. Anninos, S. Oliveira, R.A. Matzner, Phys. Rev. D 44, 1147 (1991)

    Article  ADS  Google Scholar 

  8. T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  9. D.K. Campbell, J.F. Schonfeld, C.A. Wingate, Phys. D 9, 1 (1983)

    Article  Google Scholar 

  10. D.K. Campbell, M. Peyrard, Phys. D 18, 47 (1986)

    Article  MathSciNet  Google Scholar 

  11. D.K. Campbell, M. Peyrard, Phys. D 19, 165 (1986)

    Article  MathSciNet  Google Scholar 

  12. R.H. Goodman, R. Haberman, SIAM J. Appl. Dyn. Syst. 4, 1195 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. R.H. Goodman, A. Rahman, M.J. Bellanich, C.N. Morrison, Chaos 25, 043109 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Dorey, K. Mersh, T. Romańczukiewicz, Y. Shnir, Phys. Rev. Lett. 107, 091602 (2011)

    Article  ADS  Google Scholar 

  15. F.C. Simas, A.R. Gomes, K.Z. Nobrega, J.C.R.E. Oliveira, JHEP 2016(9), 104 (2016)

    Article  Google Scholar 

  16. H. Weigel, J. Phys. Conf. Ser. 482, 012045 (2014)

    Article  Google Scholar 

  17. I. Takyi, H. Weigel, Phys. Rev. D 94, 085008 (2016)

    Article  ADS  Google Scholar 

  18. V.A. Gani, A.E. Kudryavtsev, M.A. Lizunova, Phys. Rev. D 89, 125009 (2014)

    Article  ADS  Google Scholar 

  19. A.M. Marjaneh, V.A. Gani, D. Saadatmand, S.V. Dmitriev, K. Javidan, JHEP 2017(7), 028 (2017)

    Article  Google Scholar 

  20. E. Belendryasova, V.A. Gani, Commun. Nonlinear Sci. Numer. Simul. 67, 414 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  22. L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  23. P.G. Krevrekidis, D.J. Frantzeskakis, R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation (SIAM, Philadelphia, 2015)

    Book  Google Scholar 

  24. T. Sugiyama, Prog. Theor. Phys. 61, 1550 (1979)

    Article  ADS  Google Scholar 

  25. I. Roy, S.V. Dmitriev, P.G. Kevrekidis, A. Saxena, Phys. Rev. E 76, 026601 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Gallo, D. Pelinovsky, Asympt. Anal. 73, 53 (2011)

    Google Scholar 

  27. G. Karali, C. Sourdis, Arch. Rat. Mech. Anal. 217, 439 (2015)

    Article  Google Scholar 

  28. M.P. Coles, D.E. Pelinovsky, P.G. Kevrekidis, Nonlinearity 23, 1753 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Dorignac, J.C. Eilbeck, M. Salerno, A.C. Scott, Phys. Rev. Lett. 93, 025504 (2004)

    Article  ADS  Google Scholar 

  30. A. Demirkaya, R. Decker, P.G. Kevrekidis, I.C. Christov, A. Saxena, JHEP 2017(12), 71 (2017)

    Article  Google Scholar 

  31. R.V. Radomskiy, E.V. Mrozovskaya, V.A. Gani, I.C. Christov, J. Phys. Conf. Ser. 798, 012087 (2017)

    Google Scholar 

  32. A. Khare, I.C. Christov, A. Saxena, Phys. Rev. E 90, 023208 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1602994 (PGK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan M. Ross or Aslihan Demirkaya .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Tables for n-Bounce Windows

We list the velocity intervals \([v_1,v_2]\) that result in multi-bounce windows when the initial velocity \(v_\mathrm {in}\) is picked within these intervals. In Tables 10.1 and 10.2, we list those intervals for a small separation (\(x_0=1.4\)) and a big separation (\(x_0=7\)) with \(\Omega =0.15\). In Tables 10.3 and 10.4, we list those intervals for bigger values of \(\Omega \) (0.2 and 0.3 respectively) with fixed \(x_0=2\).

Table 10.1 n-bounce windows for \(x_0=1.4\). One-bounce windows occur for \(v_\mathrm {in}>0.25845\)
Table 10.2 n-bounce windows for \(x_0=7\). One-bounce windows occur for \(v_\mathrm {in}>0.74414\)
Table 10.3 n-bounce windows for \(x_0=2\), \(\Omega =0.2\). One-bounce windows occur for \(v_\mathrm {in}>0.28942\)
Table 10.4 n-bounce windows for \(x_0=2\), \(\Omega =0.3\). One-bounce windows occur for \(v_\mathrm {in}>0.36317\)

Appendix 2: Derivation of the Coefficients in (10.14)

We define \(\phi _{\pm }=\pm \phi _0(x\pm X(t))\) and \(\chi _{\pm }=\pm \chi _{1}(x\pm X(t))\), \(\phi '_{\pm }=\pm \phi _0'(x\pm X(t))\) and \(\chi '_{\pm }=\pm \chi '_1(x\pm X(t))\). Then (10.13) becomes

$$\begin{aligned} u(x,t)=u_{\Omega }(\phi _+ + \phi _{-} -1) + A(\chi _{+}+\chi _{-}). \end{aligned}$$
(10.16)

Substituting (10.16) into (10.10) gives

$$\begin{aligned} \begin{aligned} L=&\int \left\{ \frac{1}{2}\left[ u_{\Omega }\left( \phi _{+}^{\prime }-\phi _{-}^{\prime }\right) \dot{X} +\dot{A}(\chi _{+}+\chi _{-})+A(\chi _{+}^{\prime }-\chi _{-}^{\prime })\dot{X} \right] ^{2} \right\} \mathrm {d}x\\ -&\int \left\{ \frac{1}{2}\left[ u_{\Omega }\left( \phi _{+}^{\prime }+\phi _{-}^{\prime }\right) +u_{\Omega }'(\phi _+ + \phi _{-} -1) +A(\chi _{+} ^{\prime }+\chi _{-}^{\prime }) \right] ^{2} \right\} \mathrm {d}x\\ -&\int V(u) \mathrm {d}x. \end{aligned} \end{aligned}$$
(10.17)

To handle the V(u) terms we first write \(u =u _{a}+u _{b}\) where \(u _{a}=u_{\Omega }(\phi _+ + \phi _{-} -1) \) and \(u _{b}= A(\chi _{+}+\chi _{-})\). Then using the Taylor series expansion, we get

$$\begin{aligned} \begin{aligned} V(u )&= V(u _{a}+u _{b})\\&=V(u _{a})+V^{\prime }(u _{a})u _{b}+\frac{V^{\prime \prime }(u _{a})}{2!}u _{b}^{2}+\frac{V^{^{\prime \prime \prime }}(u _{a})}{3!}u _{b}^{3}+\frac{V^{(4)}(u _{a})}{4!}u _{b}^{4} \end{aligned} \end{aligned}$$
(10.18)

The corresponding reduced Lagrangian (ignoring higher order terms) that is used in our simulations is given by (10.14). Applying Euler–Lagrange equations, we obtain (10.15).

We will list the formulae of the coefficients below. Note that they are all functions of X(t). Since \(\chi _{1}\) is not known explicitly, the coefficients presented are in the integral form. These coefficients are calculated numerically.

$$\begin{aligned} \begin{aligned} U(X)=&\int \frac{1}{2}\left( u_{\Omega } \left( \phi _{+}^{\prime }+\phi _{-}^{\prime }\right) +u_{\Omega }'(\phi _{+}+\phi _{-}-1)\right) ^{2}\,\mathrm {d}x \\&\qquad \quad \quad \,\,+\int V(u_{\Omega }(\phi _{+}+\phi _{-}-1))\,\mathrm {d}x \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} F(X)=-\frac{1}{2}\int&(u_{\Omega } \left( \phi _{+}^{\prime }+\phi _{-}^{\prime }\right) +u_{\Omega }'(\phi _{+}+\phi _{-}-1))(\chi _{+}^{\prime }+\chi _{-}^{\prime })\,\mathrm {d}x\\&-\frac{1}{2}\int V^{\prime }(u_{\Omega }(\phi _{+}+\phi _{-}-1))(\chi _{+}+\chi _{-})\,\mathrm {d}x \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} K(X)=&-\frac{1}{2}\int (\chi _{+}^{\prime }+\chi _{-}^{\prime })^{2}\,\mathrm {d}x -\frac{1}{2}\int V^{\prime \prime }(u_{\Omega }(\phi _{+}+\phi _{-}-1))(\chi _{+}+\chi _{-})^{2}\,\mathrm {d}x \end{aligned} \end{aligned}$$
$$\begin{aligned} I(X)=\frac{1}{2}\int u_{\Omega }^2\left( \phi _{+}^{\prime }-\phi _{-}^{\prime }\right) ^{2}\,\mathrm {d}x, Q(X)=\frac{1}{2}\int (\chi _{+}+\chi _{-})^{2}\,\mathrm {d}x, \end{aligned}$$
$$\begin{aligned} C(X)=\frac{1}{2}\int u_{\Omega }\left( \phi _{+}^{\prime }-\phi _{-}^{\prime }\right) (\chi _{+}+\chi _{-})\,\mathrm {d}x \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ross, R.M., Kevrekidis, P.G., Campbell, D.K., Decker, R., Demirkaya, A. (2019). \(\phi ^4\) Solitary Waves in a Parabolic Potential: Existence, Stability, and Collisional Dynamics. In: Kevrekidis, P., Cuevas-Maraver, J. (eds) A Dynamical Perspective on the ɸ4 Model. Nonlinear Systems and Complexity, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-11839-6_10

Download citation

Publish with us

Policies and ethics