Skip to main content

Historical Overview of the \(\phi ^4\) Model

  • Chapter
  • First Online:
A Dynamical Perspective on the ɸ4 Model

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 26))

Abstract

We provide an historical overview the \(\phi ^4\) model, placing it in the broad context of general KG theories and reviewing its applications to physics. While we will mention briefly other variants of the KG theory, we will focus chiefly on the history of the one-space, one-time dimensional [(1+1)D] degenerate minimum \(\phi ^4\) theory that is the central topic of this book. We will also compare this theory to other nonlinear Klein–Gordon equations, in particular, to the celebrated sine-Gordon theory. We review in some detail the history of the interrelated dynamical problems of kink-antikink scattering, contrasting \(\phi ^4\) and other non-integrable models with sine-Gordon and the search for a possible “breather” solution to \(\phi ^4\) in the continuum limit. Our discussion is intended to set the stage for more detailed expositions in the later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This claim is made in a footnote on p. 259 in [44].

  2. 2.

    This is arguably the first introduction of a collective coordinate approach in studies of the \(\phi ^4\) theory. It was followed closely by the more detailed work of Sugiyama [60]. See the section of “Collective Coordinates” below and for a thorough discussion Chaps. 3 and 4 of this book.

  3. 3.

    For purposes of our later discussion and links to other chapters in this volume, we note that the location of the kink \(x_0\) and the amplitude of the shape mode can be taken as “collective coordinates” and used to reduce the PDE to coupled ODEs [60, 63, 64] (see also Chap. 3) or coupled maps [68, 69] (see also Chap. 4).

  4. 4.

    The binding energy is amount by which the kinks are trapped in the their common potential well. See [61] for details.

  5. 5.

    There was however a subtlety in this case. Reference [56] noted that there were “quasi-resonances” in the K\(\bar{\text {K}}\) related to excitation in the continuum spectrum around the kinks, and a later study by Quintero and Kevrekidis [71] showed how these “localized” phonons could in fact produce these “quasi-resonances”. Interested readers should refer to these two articles for details.

References

  1. O. Klein, Z. Phys. 37, 895 (1926)

    Article  ADS  Google Scholar 

  2. W. Gordon, Z. Phys. 40, 117 (1926–1927)

    Google Scholar 

  3. P.A.M. Dirac, Proc. R. Soc. A 117, 778 (1928)

    Article  Google Scholar 

  4. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

    Article  ADS  Google Scholar 

  6. M.D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  7. Ya.B. Zeldovich, I.Y. Kobzarev, L.B. Okun, Sov. Phys. JETP 40, 1 (1975)

    Google Scholar 

  8. V.L. Ginzburg, L.D. Landau, Sov. Phys. JETP 20, 1064 (1950)

    Google Scholar 

  9. For a review, R.A. Cowley, Adv. Phys. 29, 219 (1980)

    Google Scholar 

  10. Y. Ishibashi, Y. Takagi, J. Phys. Soc. Jpn. 33, 1 (1972)

    Article  ADS  Google Scholar 

  11. S. Aubry, R. Pick, Ferroelectrics 8, 471 (1974)

    Article  Google Scholar 

  12. S. Aubry, J. Chem. Phys. 64, 3217 (1975)

    Article  ADS  Google Scholar 

  13. S. Aubry, J. Chem. Phys. 64, 3392 (1976)

    Article  ADS  Google Scholar 

  14. S. Aubry, Ferroelectrics 12, 263 (1976)

    Article  Google Scholar 

  15. J.A. Krumhansl, J.R. Schrieffer, Phys. Rev. B 11, 3535 (1975)

    Article  ADS  Google Scholar 

  16. C.M. Varma, Phys. Rev. B 14, 244 (1976)

    Article  ADS  Google Scholar 

  17. T. Schneider, E. Stoll, Phys. Rev. Lett. 35, 296 (1975)

    Article  ADS  Google Scholar 

  18. T.R. Koehler, A.R. Bishop, J.A. Krumhansl, J.R. Schrieffer, Solid State Commun. 17, 1515 (1975)

    Article  ADS  Google Scholar 

  19. Y. Wada, J.R. Schrieffer, Phys. Rev. B 18, 3897 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. G.M. Mazenko, P.S. Sahni, Phys. Rev. B 18, 6139 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.F. Currie, J.A. Krumhansl, A.R. Bishop, S.E. Trullinger, Phys. Rev. B 22, 477 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.J. Rice, Phys. Lett. A 71, 152 (1979)

    Article  ADS  Google Scholar 

  23. M.J. Rice, J. Timonen, Phys. Lett. A 73, 368 (1979)

    Article  ADS  Google Scholar 

  24. M.J. Rice, E.J. Mele, Solid State Commun. 35, 487 (1980)

    Article  ADS  Google Scholar 

  25. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  26. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)

    Article  ADS  Google Scholar 

  27. H. Takayama, Y.R. Lin-liu, K. Maki, Phys. Rev. B 21, 2388 (1980)

    Article  ADS  Google Scholar 

  28. R. Jackiw, J.R. Schrieffer, Nucl. Phys. B 190, 253 (1981)

    Article  ADS  Google Scholar 

  29. R.D. Yamaletdinov, V.A. Slipko, Y.V. Pershin, Phys. Rev. B 96, 094306 (2017)

    Article  ADS  Google Scholar 

  30. R.B. Griffiths, B. Simon, Commun. Math. Phys. 33, 145 (1972)

    Google Scholar 

  31. J. Glimm, A. Jaffe, T. Spencer, Commun. Math. Phys. 45, 203–216 (1975)

    Article  ADS  Google Scholar 

  32. R.F. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D 10, 4130 (1974)

    Article  ADS  Google Scholar 

  33. R.F. Dashen, B. Hasslacher, A. Neveu, Phys. Rev. D 11, 3424 (1975)

    Article  ADS  Google Scholar 

  34. J. Goldstone, R. Jackiw, Phys. Rev. D 11, 1486 (1975)

    Article  ADS  Google Scholar 

  35. R. Rajaraman, Phys. Rep. 21, 227 (1975)

    Article  ADS  Google Scholar 

  36. D.K. Campbell, Y.T. Liao, Phys. Rev. D 14, 2093 (1976)

    Article  ADS  Google Scholar 

  37. D.K. Campbell, in Nuclear Physics with Heavy Ions and Mesons, ed. by R. Balian, M. Rho, G. Ripka, Les Houches Summer School Session XXX, July–August 1977 (North Holland, Amsterdam, 1978), p. 674

    Google Scholar 

  38. R. Jackiw, C. Rebbi, Phys. Rev. D 13, 3398 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Coleman, in The Whys of Subnuclear Physics, ed. by A. Zichichi (Plenum, New York, 1979), p. 845

    Google Scholar 

  40. A.C. Scott, F.Y.F. Chu, D.W. McLaughlin, Proc. IEEE 61, 1443 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  41. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    Book  Google Scholar 

  42. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  43. S. Coleman, Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  44. J. Rubinstein, J. Math. Phys. 11, 258 (1970)

    Article  ADS  Google Scholar 

  45. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  46. R. Steuerwald, Abh. Bayer. Akad. Wiss. 40, 1 (1936)

    Google Scholar 

  47. L.P. Eisenhart, A Treatise on Differential Geometry of Curves and Surfaces (Dover, New York, 1960)

    MATH  Google Scholar 

  48. A. Seeger, A. Kochendorfer, Z. Phys. 130, 321 (1951)

    Article  ADS  Google Scholar 

  49. A. Seeger, H. Donth, A. Kochendorfer, Z. Phys. 134, 173 (1953)

    Article  ADS  Google Scholar 

  50. J.K. Perring, T.H.R. Skyrme, Nucl. Phys. 31, 550 (1962)

    Article  Google Scholar 

  51. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Phys. Rev. Lett. 30, 1262 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  52. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  Google Scholar 

  53. D.K. Campbell, D. Farmer, J. Crutchfield, E. Jen, Commun. ACM 28, 374 (1985)

    Article  Google Scholar 

  54. M.J. Ablowitz, M.D. Kruskal, J.F. Ladik, SIAM J. Appl. Math. 36, 428 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  55. A.E. Kudryavtsev, JETP Lett. 22, 82 (1975)

    ADS  Google Scholar 

  56. M. Peyrard, D.K. Campbell, Phys. D 9, 33 (1983)

    Article  Google Scholar 

  57. D.K. Campbell, M. Peyrard, P. Sodano, Phys. D 19, 165 (1986)

    Article  MathSciNet  Google Scholar 

  58. B.S. Getmanov, JETP Lett. 24, 291 (1976)

    ADS  Google Scholar 

  59. V.G. Makhankov, Phys. Rep. 35, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  60. T. Sugiyama, Prog. Theor. Phys. 61, 550 (1979)

    Article  Google Scholar 

  61. D.K. Campbell, J.F. Schonfeld, C.A. Wingate, Phys. D 9, 1 (1983)

    Article  Google Scholar 

  62. J.L. Gervais, A. Jevicki, B. Sakita, Phys. Rev. D 12, 1038 (1975)

    Article  ADS  Google Scholar 

  63. H. Weigel, J. Phys. Conf. Ser. 482, 012045 (2014)

    Article  Google Scholar 

  64. I. Takyi, H. Weigel, Phys. Rev. D 94, 085008 (2016)

    Article  ADS  Google Scholar 

  65. R. Klein, W. Hasenfratz, N. Theodorokapoulos, W. Wünderlich, Ferroelectrics 26, 721 (1980)

    Article  Google Scholar 

  66. M. Moshir, Nucl. Phys. B 185, 318 (1981)

    Article  ADS  Google Scholar 

  67. D.K. Campbell, M. Peyrard, Phys. D 18, 47 (1986)

    Article  MathSciNet  Google Scholar 

  68. R.H. Goodman, R. Haberman, SIAM J. App. Dyn. Sys. 4, 119 (2005)

    Google Scholar 

  69. R.H. Goodman, R. Haberman, Phys. Rev. Lett. 98, 104103 (2007)

    Article  ADS  Google Scholar 

  70. P. Dorey, K. Mersh, T. Romańczukiewicz, Y. Shnir, Phys. Rev. Lett. 107, 091602 (2011)

    Article  ADS  Google Scholar 

  71. N.R. Quintero, P.G. Kevrekidis, Phys. D 170, 31 (2002)

    Article  MathSciNet  Google Scholar 

  72. P. Anninos, S. Oliviera, R.A. Matzner, Phys. Rev. D 44, 1147 (1991)

    Article  ADS  Google Scholar 

  73. T. Belova, A. Kudryavtsev, Phys. D 32, 18 (1988)

    Article  MathSciNet  Google Scholar 

  74. D.K. Campbell, in Time Dependent Hartree-Fock Method, ed. by P. Bonche, B. Giraud, Ph. Quentin (Editions de Physique, Paris, 1979), p. 218

    Google Scholar 

  75. D.K. Campbell, in Complex Systems, SFI Studies in the Sciences of Complexity, ed. by D. Stein (Addison-Wesley Longman, Boston, 1989), p. 3

    Google Scholar 

  76. D.K. Campbell, M. Peyrard, in CHAOS/XAOC: Soviet-American Perspectives on Nonlinear Science, ed. by D.K. Campbell (American Institute of Physics, New York, 1990), p. 305

    Google Scholar 

  77. J.P. Boyd, in Nonlinear Topics of Ocean Physics, ed. by A.R. Osborne, Fermi Summer School, Course LIX (North-Holland, Amsterdam, 1991), p. 527

    Google Scholar 

  78. J.P. Boyd, Nonlinearity 3, 177 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  79. H. Segur, M.D. Kruskal, Phys. Rev. Lett. 58, 747 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  80. B. Birnir, H. McKean, A. Weinstein, Commun. Pure Appl. Math. 47, 1043 (1994)

    Article  Google Scholar 

  81. S. Takeno, K. Kisoda, A.J. Sievers, Prog. Theor. Phys. Suppl. 94, 242 (1988)

    Article  ADS  Google Scholar 

  82. R.S. MacKay, S. Aubry, Nonlinearity 7, 1623 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  83. S. Flach, Phys. Rev. E 51, 1503 (1995)

    Article  ADS  Google Scholar 

  84. S. Flach, C.R. Willis, Phys. Rep. 295, 181 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  85. D.K. Campbell, S. Flach, Yu.S. Kivshar, Phys. Today 57, 43 (2004)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank my collaborators in the work I have described here —Michel Peyrard, Jonathan Schonfeld, Pasquale Sodano, and Chuck Wingate— and to recall the great times we shared in writing the original papers. I thank Michel Peyrard for regenerating some of the old figures. I am also grateful to Panos Kevrekidis and Jesús Cuevas-Maraver for helpful comments and assistance on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campbell, D.K. (2019). Historical Overview of the \(\phi ^4\) Model. In: Kevrekidis, P., Cuevas-Maraver, J. (eds) A Dynamical Perspective on the ɸ4 Model. Nonlinear Systems and Complexity, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-11839-6_1

Download citation

Publish with us

Policies and ethics