Skip to main content

Shock, Resuscitation, and Fluid Therapy Strategies in Acute Care Surgery: From Pathophysiology to Practice

  • Chapter
  • First Online:
Book cover Intensive Care for Emergency Surgeons

Part of the book series: Hot Topics in Acute Care Surgery and Trauma ((HTACST))

  • 1233 Accesses

Abstract

Hypovolemia and shock are commonly encountered by acute care surgeons caring for the critically ill. In addition to the shock associated with many surgical conditions, a number of interventions potentiate hypovolemia and/or contribute to the inflammatory and immune dysregulation common to shock states. By understanding oxygen kinetics, the cellular response to dysoxia, and fluid physiology, the surgeon can more readily identify shock, restore homeostasis and provide patients with the best chances of achieving optimal outcomes. Over the last few decades, the strategies that guide the care of patients with hypovolemia, septic shock, and hemorrhagic shock have dramatically changed. Therefore, this chapter also presents the evolution of and evidence for modern fluid resuscitation strategies and offers pragmatic approaches to goal-directed fluid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marino P. The ICU book. Philadelphia, PA: Wolters Kluwer/Lippincott Wiliams & Wilkins; 2014.

    Google Scholar 

  2. Nichols D, Nielsen ND. Oxygen delivery and consumption: a macrocirculatory perspective. Crit Care Clin. 2010;26:239–53.

    Article  PubMed  Google Scholar 

  3. Annich GM, Lynch WR, MacLaren G, Wilson JM, Bartlett RH, editors. ECMO extracorporeal cardiopulmonary support in critical care. Ann Arbor, MI: Extracorporeal Life Support Organization; 2012.

    Google Scholar 

  4. Zakaria R, Li N, Matheson PJ, Garrison RN. Cellular edema regulates tissue capillary perfusion after hemorrhage resuscitation. Surgery. 2007;142:487–96.

    Article  Google Scholar 

  5. Webb A, Angus D, Finfer S, Gattinoni L, Singer M. In: Delaney A, editor. Oxford textbook of critical care. 2nd ed. Oxford: Oxford University Press; 2016.

    Chapter  Google Scholar 

  6. Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Matthews JB, et al. Schwartz’s principles of surgery, 10th edition. New York, NY: McGraw-Hill Education; 2015.

    Google Scholar 

  7. Levick JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol. 2004;557:704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  PubMed  Google Scholar 

  9. Schott U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016;24:48.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alphonsus CS, Rodseth RN. The endothelial glycocalyx: a review of the vascular barrier. Anaesthesia. 2014;69:777–84.

    Article  CAS  PubMed  Google Scholar 

  11. Kolarova H, Ambruzova B, Svihalkova Sindlerova L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm. 2014;2014:694312.

    Article  CAS  Google Scholar 

  12. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.

    Article  CAS  PubMed  Google Scholar 

  13. Leung AA, McAlister FA, Rogers SO Jr, Pazo V, Wright A, Bates DW. Preoperative hyponatremia and perioperative complications. Arch Intern Med. 2012;172:1474–81.

    Article  PubMed  Google Scholar 

  14. Perel P, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2012;6:CD000567.

    Google Scholar 

  15. Bunn F, Trivedi D. Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev. 2012;1:CD001319.

    Google Scholar 

  16. Lee JA. Sydney ringer (1834–1910) and Alexis Hartmann (1898–1964). Anaesthesia. 1981;36:1115–21.

    Article  CAS  PubMed  Google Scholar 

  17. Todd SR, Malinoski D, Muller PJ, Schreiber MA. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J Trauma. 2007;62:636–9.

    PubMed  Google Scholar 

  18. Kiraly LN, Differding JA, Enomoto TM, Sawai RS, Muller PJ, Diggs B, et al. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. 2006;61:57–64.

    Article  PubMed  Google Scholar 

  19. Koustova E, Stanton K, Gushchin V, Alam HB, Stegalkina S, Rhee PM. Effects of lactated Ringer’s solutions on human leukocytes. J Trauma. 2002;52:872–8.

    CAS  PubMed  Google Scholar 

  20. Foex BA. How the cholera epidemic of 1831 resulted in a new technique for fluid resuscitation. EMJ. 2003;20:316–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kellum JA, Song M, Li J. Science review: extracellular acidosis and the immune response: clinical and physiologic implications. Crit Care. 2004;8:331–6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lobo DN, Awad S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent ‘pre-renal’ acute kidney injury?: con. Kidney Int. 2014;86:1096–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Semler MW, Rice TW. Sepsis resuscitation: fluid choice and dose. Clin Chest Med. 2016;37:241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte(R) 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256:18–24.

    Article  PubMed  Google Scholar 

  25. Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36.

    Article  CAS  PubMed  Google Scholar 

  26. Young JB, Utter GH, Schermer CR, Galante JM, Phan HH, Yang Y, et al. Saline versus plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259:255–62.

    Article  PubMed  Google Scholar 

  27. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-Lyte. Ann Surg. 2012;255:821–9.

    Article  PubMed  Google Scholar 

  28. Powell-Tuck J, Gosling P, Lobo D, et al. British consensus guidelines on intravenous fluid therapy for adult surgical patients (GIFTASUP). 2011. https://www.bapen.org.uk/pdfs/bapen_pubs/giftasup.pdf. Accessed 1 March 2019.

  29. Smith CA, Duby JJ, Utter GH, Galante JM, Scherer LA, Schermer CR. Cost-minimization analysis of two fluid products for resuscitation of critically injured trauma patients. Am J Health Syst Pharm. 2014;71:470–5.

    Article  CAS  PubMed  Google Scholar 

  30. Strandvik GF. Hypertonic saline in critical care: a review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia. 2009;64:990–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Duchesne JC, Simms E, Guidry C, Duke M, Beeson E, McSwain NE, et al. Damage control immunoregulation: is there a role for low-volume hypertonic saline resuscitation in patients managed with damage control surgery? Am Surg. 2012;78:962–8.

    Article  PubMed  Google Scholar 

  32. Harvin JA, Mims MM, Duchesne JC, Cox CS Jr, Wade CE, Holcomb JB, et al. Chasing 100%: the use of hypertonic saline to improve early, primary fascial closure after damage control laparotomy. J Trauma Acute Care Surg. 2013;74:426–30.

    Article  PubMed  Google Scholar 

  33. Loftus TJ, Efron PA, Bala TM, Rosenthal MD, Croft CA, Smith RS, et al. Hypertonic saline resuscitation after emergent laparotomy and temporary abdominal closure. J Trauma Acute Care Surg. 2018;84:350–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Caironi P, Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfus. 2009;7:259–67.

    PubMed  PubMed Central  Google Scholar 

  35. Cochrane Injuries Group, Albumin R. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ. 1998;317:235–40.

    Article  Google Scholar 

  36. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  CAS  PubMed  Google Scholar 

  37. Safe Study Investigators, Australian, New Zealand Intensive Care Society Clinical Trials Group, Australian Red Cross Blood Service, George Institute for International Health, Myburgh J, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357:874–84.

    Article  Google Scholar 

  38. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.

    Article  CAS  PubMed  Google Scholar 

  39. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA. 2013;310:1809–17.

    Article  CAS  PubMed  Google Scholar 

  40. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45:486–552.

    Article  PubMed  Google Scholar 

  42. Allen CJ, Ruiz XD, Meizoso JP, Ray JJ, Livingstone AS, Schulman CI, et al. Is hydroxyethyl starch safe in penetrating trauma patients? Mil Med. 2016;181:152–5.

    Article  PubMed  Google Scholar 

  43. Mishler JM. Pharmacological effects produced by the acute and chronic administration of hydroxyethyl starch. J Clin Apher. 1984;2:52–62.

    Article  CAS  PubMed  Google Scholar 

  44. Hartog CS, Kohl M, Reinhart K. A systematic review of third-generation hydroxyethyl starch (HES 130/0.4) in resuscitation: safety not adequately addressed. Anesth Analg. 2011;112:635–45.

    Article  CAS  PubMed  Google Scholar 

  45. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  46. Bechir M, Puhan MA, Fasshauer M, Schuepbach RA, Stocker R, Neff TA. Early fluid resuscitation with hydroxyethyl starch 130/0.4 (6%) in severe burn injury: a randomized, controlled, double-blind clinical trial. Crit Care. 2013;17:R299.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Peng Z, Pati S, Potter D, Brown R, Holcomb JB, Grill R, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock. 2013;40:195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Traverso LW, Hollenbach SJ, Bolin RB, Langford MJ, DeGuzman LR. Fluid resuscitation after an otherwise fatal hemorrhage: II colloid solutions. J Trauma. 1986;26:176–82.

    Article  CAS  PubMed  Google Scholar 

  49. Balvers K, Wirtz MR, van Dieren S, Goslings JC, Juffermans NP. Risk factors for trauma-induced coagulopathy- and transfusion-associated multiple organ failure in severely injured trauma patients. Front Med (Lausanne). 2015;2:24.

    Google Scholar 

  50. Sperry JL, Ochoa JB, Gunn SR, Alarcon LH, Minei JP, Cuschieri J, et al. An FFP:PRBC transfusion ratio >/=1:1.5 is associated with a lower risk of mortality after massive transfusion. J Trauma. 2008;65:986–93.

    PubMed  Google Scholar 

  51. Marietta M, Franchini M, Bindi ML, Picardi F, Ruggeri M, De Silvestro G. Is solvent/detergent plasma better than standard fresh-frozen plasma? A systematic review and an expert consensus document. Blood Transfus. 2016;14:277–86.

    PubMed  PubMed Central  Google Scholar 

  52. Lee TH, Van PY, Spoerke NJ, Hamilton GJ, Cho SD, Watson K, et al. The use of lyophilized plasma in a severe multi-injury pig model. Transfusion. 2013;53:72–9.

    Article  CAS  Google Scholar 

  53. Sailliol A, Martinaud C, Cap AP, Civadier C, Clavier B, Deshayes AV, et al. The evolving role of lyophilized plasma in remote damage control resuscitation in the French armed forces health service. Transfusion. 2013;53(Suppl 1):65S–71S.

    Article  CAS  PubMed  Google Scholar 

  54. Glassberg E, Nadler R, Gendler S, Abramovich A, Spinella PC, Gerhardt RT, et al. Freeze-dried plasma at the point of injury: from concept to doctrine. Shock. 2013;40:444–50.

    Article  CAS  PubMed  Google Scholar 

  55. Cotton BA, Guy JS, Morris JA Jr, Abumrad NN. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.

    Article  CAS  PubMed  Google Scholar 

  56. Takil A, Eti Z, Irmak P, Yilmaz Gogus F. Early postoperative respiratory acidosis after large intravascular volume infusion of lactated ringer’s solution during major spine surgery. Anesth Analg. 2002;95:294–8.

    CAS  PubMed  Google Scholar 

  57. Rahbari NN, Zimmermann JB, Schmidt T, Koch M, Weigand MA, Weitz J. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br J Surg. 2009;96:331–41.

    Article  CAS  PubMed  Google Scholar 

  58. National Heart Lung, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Article  Google Scholar 

  59. Polito C, Martin GS. Albumin: physiologic and clinical effects on lung function. Minerva Anestesiol. 2013;79:1180–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359:1812–8.

    Article  PubMed  Google Scholar 

  61. Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Duchesne JC, Kaplan LJ, Balogh ZJ, Malbrain ML. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension. Anaesthesiol Intensive Ther. 2015;47:143–55.

    Article  PubMed  Google Scholar 

  63. Futier E, Constantin JM, Petit A, Chanques G, Kwiatkowski F, Flamein R, et al. Conservative vs restrictive individualized goal-directed fluid replacement strategy in major abdominal surgery: a prospective randomized trial. Arch Surg. 2010;145:1193–200.

    Article  PubMed  Google Scholar 

  64. Cannesson M, Ramsingh D, Rinehart J, Demirjian A, Vu T, Vakharia S, et al. Perioperative goal-directed therapy and postoperative outcomes in patients undergoing high-risk abdominal surgery: a historical-prospective, comparative effectiveness study. Crit Care. 2015;19:261.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Finnerty CC, Mabvuure NT, Ali A, Kozar RA, Herndon DN. The surgically induced stress response. JPEN. 2013;37:21S–9S.

    Article  Google Scholar 

  66. Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to enhanced recovery after surgery (ERAS). Can J Anaesth. 2015;62:158–68.

    Article  PubMed  Google Scholar 

  67. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Article  PubMed  Google Scholar 

  69. Rothermel LD, Lipman JM. Estimation of blood loss is inaccurate and unreliable. Surgery. 2016;160:946–53.

    Article  PubMed  Google Scholar 

  70. Krausz MM. Initial resuscitation of hemorrhagic shock. WJES. 2006;1:14.

    PubMed  PubMed Central  Google Scholar 

  71. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  72. Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–93.

    Article  CAS  Google Scholar 

  73. ARISE Investigators, ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Article  CAS  Google Scholar 

  74. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    Article  CAS  PubMed  Google Scholar 

  75. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  CAS  PubMed  Google Scholar 

  76. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–53.

    Article  PubMed  Google Scholar 

  77. Bihari S, Prakash S, Bersten AD. Post resusicitation fluid boluses in severe sepsis or septic shock: prevalence and efficacy (price study). Shock. 2013;40:28–34.

    Article  PubMed  Google Scholar 

  78. Kelm DJ, Perrin JT, Cartin-Ceba R, Gajic O, Schenck L, Kennedy CC. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015;43:68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–7.

    Article  PubMed  Google Scholar 

  80. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–83.

    Article  PubMed  Google Scholar 

  81. Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.

    Article  PubMed  Google Scholar 

  82. Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19:18.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, et al. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:40–56.

    Article  PubMed  Google Scholar 

  84. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18:650.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–77.

    Article  PubMed  Google Scholar 

  86. Casserly B, Phillips GS, Schorr C, Dellinger RP, Townsend SR, Osborn TM, et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the surviving sepsis campaign database. Crit Care Med. 2015;43:567–73.

    Article  CAS  PubMed  Google Scholar 

  87. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–61.

    Article  PubMed  Google Scholar 

  88. Butler FK Jr. Fluid resuscitation in tactical combat casualty care: yesterday and today. Wilderness Environ Med. 2017;28:S74–81.

    Article  PubMed  Google Scholar 

  89. Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331:1105–9.

    Article  CAS  PubMed  Google Scholar 

  90. Schreiber MA, Meier EN, Tisherman SA, Kerby JD, Newgard CD, Brasel K, et al. A controlled resuscitation strategy is feasible and safe in hypotensive trauma patients: results of a prospective randomized pilot trial. J Trauma Acute Care Surg. 2015;78:687–95.. discussion 695–687

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rodas EB, Malhotra AK, Chhitwal R, Aboutanos MB, Duane TM, Ivatury RR. Hyperacute abdominal compartment syndrome: an unrecognized complication of massive intraoperative resuscitation for extra-abdominal injuries. Am Surg. 2005;71:977–81.

    Article  PubMed  Google Scholar 

  92. Schreiber MA, Perkins J, Kiraly L, Underwood S, Wade C, Holcomb JB. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007;205:541–5.

    Article  PubMed  Google Scholar 

  93. Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Holcomb JB, Ware DN, et al. Secondary abdominal compartment syndrome is an elusive early complication of traumatic shock resuscitation. Am J Surg. 2002;184:538–43.

    Article  PubMed  Google Scholar 

  94. Savage SA, Zarzaur BL, Croce MA, Fabian TC. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74:396–400.

    Article  PubMed  Google Scholar 

  95. Savage SA, Sumislawski JJ, Zarzaur BL, Dutton WP, Croce MA, Fabian TC. The new metric to define large-volume hemorrhage: results of a prospective study of the critical administration threshold. J Trauma Acute Care Surg. 2015;78:224–9.

    Article  PubMed  Google Scholar 

  96. Surgeons CoTotACo. ACS TQIP massive transfusion in trauma guidelines. Chicago, IL: American College of Surgeons; 2015.

    Google Scholar 

  97. Holcomb JB, del Junco DJ, Fox EE, Wade CE, Cohen MJ, Schreiber MA, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148:127–36.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313:471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gonzalez E, Moore EE, Moore HB, Chapman MP, Chin TL, Ghasabyan A, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263:1051–9.

    Article  PubMed  Google Scholar 

  100. Mandell SP, Gibran NS. Early enteral nutrition for burn injury. Adv Wound Care (New Rochelle). 2014;3:64–70.

    Article  Google Scholar 

  101. Hegazi RA, Wischmeyer PE. Clinical review: optimizing enteral nutrition for critically ill patients--a simple data-driven formula. Crit Care. 2011;15:234.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald V. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, B.T., Maier, R.V. (2019). Shock, Resuscitation, and Fluid Therapy Strategies in Acute Care Surgery: From Pathophysiology to Practice. In: Picetti, E., Pereira, B., Razek, T., Narayan, M., Kashuk, J. (eds) Intensive Care for Emergency Surgeons. Hot Topics in Acute Care Surgery and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-11830-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11830-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11829-7

  • Online ISBN: 978-3-030-11830-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics