Skip to main content

Incretin Therapies: Current Use and Emerging Possibilities

  • Chapter
  • First Online:
The Diabetes Textbook

Abstract

In the last decade, analogs of the incretin glucagon-like peptide-1 (GLP-1) became an important pillar of the therapy of type 2 diabetes (T2D) and are a fascinating focus of current research. The term “incretin” denotes the entity of hormones that are secreted by the mucosal cells of the intestine and increases the secretion of insulin from the β-cells of the pancreas. The history of studies examining incretin effects goes far. The first comprehensive experiment proving the effects of incretins on the pancreas of animals was reported already as early as in the year 1902 by English physiologists Bayliss and Starling [1]. This was by the way the first description of a hormone at all. In this early research, the jejunum of a dog was cut from all nervous connections, but the blood vessels between the intestine and the pancreas were kept intact. The introduction of a liquid into the jejunum mimicking chyme resulted in an increase of pancreatic secretion. After infusion of the same liquid into the blood vessels supplying the pancreas, this increase of pancreatic secretion was not seen. Authors concluded absolutely correct that “since this part of the intestine was completely cut off from nervous connection with the pancreas, the conclusion was inevitable that the effect was produced by some chemical substance finding its way into the veins of the loop of jejunum in question and being carried in the blood-stream to the pancreatic cells” [1]. Today we know that incretins belong to the group of these “chemical substances” which are secreted after the ingestion of food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

cAMP-GEF-2:

cAMP-guanine nucleotide exchange factor 2

CI:

95% confidence interval

DPP-4:

Dipeptidyl-peptidase 4

fMRI:

Functional magnetic resonance imaging

GIP:

Gastric inhibitory polypeptide (also: glucose-dependent insulinotropic peptide)

GLP-1:

Glucagon-like peptide-1

HbA1c:

Hemoglobin A1c

HR:

Hazard ratio

IgG:

Immunoglobulin G

IV:

Intravenous

KATP channel:

ATP-sensitive potassium channel

KV channel:

Delayed rectifying potassium channel

LAR:

Long-acting release

PYY:

Peptide YY

SC:

Subcutaneous

T1R:

Taste receptor type 1

T2D:

Type 2 diabetes

USFDA:

United States Food and Drug Administration

References

  1. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol. 1902;28:325–53.

    Article  CAS  Google Scholar 

  2. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82.

    Article  CAS  Google Scholar 

  3. McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964;2:20–1.

    Article  CAS  Google Scholar 

  4. Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest. 1967;46:1954–62.

    Article  CAS  Google Scholar 

  5. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60:470–512. https://doi.org/10.1124/pr.108.000604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–8.

    Article  CAS  Google Scholar 

  7. Teff KL. How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol Behav. 2011;103:44–50. https://doi.org/10.1016/j.physbeh.2011.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shestakova EA, Sklyanik IA, Dedova ED, Nikankina LV, Shestakova MV, Dedov II. Influence of meal olfactory and visual stimuli on GLP-1 plasma concentration in healthy volunteers. European association of the Study of Diabetes, 53rd annual meeting, 2017, abstract no. 508 (PS 028).

    Google Scholar 

  9. Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40. https://doi.org/10.1038/nrgastro.2013.180.

    Article  CAS  PubMed  Google Scholar 

  10. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.

    Article  CAS  Google Scholar 

  11. Roussel M, Mathieu J, Dalle S. Molecular mechanisms redirecting the GLP-1 receptor signalling profile in pancreatic β-cells during type 2 diabetes. Horm Mol Biol Clin Invest. 2016;26:87–95. https://doi.org/10.1515/hmbci-2015-0071.

    Article  CAS  Google Scholar 

  12. Holst JJ, Christensen M, Lund A, de Heer J, Svendsen B, Kielgast U, et al. Regulation of glucagon secretion by incretins. Diabetes Obes Metab. 2011;13(Suppl 1):89–94. https://doi.org/10.1111/j.1463-1326.2011.01452.x.

    Article  CAS  PubMed  Google Scholar 

  13. Schloegl H, Percik R, Horstmann A, Villringer A, Stumvoll M. Peptide hormones regulating appetite – focus on neuroimaging studies in humans. Diabetes Metab Res Rev. 2011;27:104–12. https://doi.org/10.1002/dmrr.1154.

    Article  CAS  PubMed  Google Scholar 

  14. Nonogaki K, Kaji T, Yamazaki T, Murakami M. Pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting. Neurosci Lett. 2016;612:14–7. https://doi.org/10.1016/j.neulet.2015.12.011.

    Article  CAS  PubMed  Google Scholar 

  15. Schlögl H, Kabisch S, Horstmann A, Lohmann G, Müller K, Lepsien J, et al. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care. 2013;36:1933–40. https://doi.org/10.2337/dc12-1925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Bloemendaal L, IJzerman RG, Ten Kulve JS, Barkhof F, Konrad RJ, Drent ML, et al. GLP-1 receptor activation modulates appetite – and reward-related brain areas in humans. Diabetes. 2014;63:4186–96. https://doi.org/10.2337/db14-0849.

    Article  CAS  PubMed  Google Scholar 

  17. Frias JP, Bastyr EJ 3rd, Vignati L, Tschöp MH, Schmitt C, Owen K, et al. The sustained effects of a dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 2017;26:343–52. https://doi.org/10.1016/j.cmet.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  18. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  19. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai Y, Wei L, Ma L, Huang X, Tao A, Liu Z, et al. Long-acting preparations of exenatide. Drug Des Devel Ther. 2013;7:963–70. https://doi.org/10.2147/DDDT.S46970.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–39. https://doi.org/10.1056/NEJMoa1612917.

    Article  CAS  PubMed  Google Scholar 

  22. Lau J, Bloch P, Schäffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58:7370–80. https://doi.org/10.1021/acs.jmedchem.5b00726.

    Article  CAS  PubMed  Google Scholar 

  23. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57. https://doi.org/10.1056/NEJMoa1509225.

    Article  CAS  PubMed  Google Scholar 

  24. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44. https://doi.org/10.1056/NEJMoa1607141.

    Article  CAS  PubMed  Google Scholar 

  25. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42. https://doi.org/10.1056/NEJMoa1501352.

    Article  CAS  PubMed  Google Scholar 

  26. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26. https://doi.org/10.1056/NEJMoa1307684.

    Article  CAS  PubMed  Google Scholar 

  27. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–35. https://doi.org/10.1056/NEJMoa1305889.

    Article  CAS  PubMed  Google Scholar 

  28. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  Google Scholar 

  29. Le Roux CW, Astrup A, Fujioka K, et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet. 2017;389:1399–409. https://doi.org/10.1016/S0140-6736(17)30069-7.

    Article  CAS  PubMed  Google Scholar 

  30. Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18:317–32. https://doi.org/10.1111/dom.12596.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Furness JB, et al. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40. This review provides an excellent overview about the molecular mechanism how the gut sensors the content of the intestinal lumen and how this information is further processed to elicit reactions in the human body. This review also provides further information about the receptors on intestinal L-cells which, when activated, trigger GLP-1-secretion.

    Google Scholar 

  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39. Comprehensive review from 2007 highlighting GLP-1 physiology with detailed descriptions how GLP-1 affects the pancreas, intestine, liver, and other parts of the body and how GLP-1-physiology is altered in conditions like obesity and diabetes.

    Google Scholar 

  • Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18:317–32. Good overview of head-to-head trials comparing effects of pharmaceutically available GLP-1 analogs.

    Google Scholar 

  • Schlögl H, et al. Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care. 2013;36:1933–40. First neuroimaging study which investigates the central nervous effects of GLP-1 analog administration in humans with functional MRI, demonstration changes of hypothalamic activity after GLP-1 analog administration which are accompanied by decreased hunger and reduced energy intake.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stumvoll .

Editor information

Editors and Affiliations

Glossary

Cardiovascular outcome study

Study demanded from the USFDA since 2008 for all new diabetes drugs to rule out an excess cardiovascular risk. Cardiovascular safety is defined by the USFDA as an upper bound of the two-sided 95% CI for major adverse cardiovascular events of less than 1.8 preapproval and 1.3 postapproval.

Functional magnetic resonance imaging (FMRI)

Technique to assess brain perfusion and thus receive information about the activity of different areas of the brain

Gastric inhibitory polypeptide (GIP, later also termed glucose-dependent insulinotropic peptide)

Peptide hormone produced mainly in the K-cells of the duodenum and the jejunum. Increases insulin secretion of the β-cells of the pancreas when blood glucose is elevated

Glucagon-like peptide 1 (GLP-1)

Peptide hormone produced mainly in the L-cells of the distal ileum and the colon. Increases insulin secretion of the β-cells of the pancreas when blood glucose is elevated. Analogs of GLP-1 were the first incretin mimetics approved for the treatment of diabetes mellitus type 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlögl, H., Stumvoll, M. (2019). Incretin Therapies: Current Use and Emerging Possibilities. In: Rodriguez-Saldana, J. (eds) The Diabetes Textbook. Springer, Cham. https://doi.org/10.1007/978-3-030-11815-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11815-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11814-3

  • Online ISBN: 978-3-030-11815-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics