Advertisement

Cancer Immunoediting and Hijacking of the Immune System

  • Vanda Póvoa
  • Rita FiorEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

In this chapter we present an historic perspective of the relationship between cancer and the immune system. We will see how it was not always clear that the immune system was able to recognize and fight cancer and how different theories have evolved, from immunosurveillance to the recent immunoediting theory. We will see how the tumor microenvironment is extremely rich in different immune cell populations. Then we will broadly revise, the main components of the immune system and how it roughly works (immunology in a very small nutshell) to be able to understand how cancer cells not only escape the immune system to become undetectable but also how they can hijack immune cells to help cancer progression. We will also see how cancer cells exploit the mechanisms of self-tolerance to their own benefit. Many times turning immune cells against each other - almost provoking an immune civil war, that in the end generates a highly immune supressive ecosystem that allows tumor cells to thrive in an uncontrolled manner The molecules and cells that are major players in these processes will be addressed. We then conclude this chapter by describing the several new revolutionary approaches to fight cancer using the patient’s own immune system.

References

  1. 1.
    Ribatti D (2015) The concept of immune surveillance against tumors. The first theories. Oncotarget 8(4):7175–7180.  https://doi.org/10.18632/oncotarget.12739 CrossRefGoogle Scholar
  2. 2.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570.  https://doi.org/10.1126/science.1203486 CrossRefGoogle Scholar
  3. 3.
    Kienle GS (2012) Fever in cancer treatment: Coley’s therapy and epidemiologic observations. Glob Adv Health Med 1(1):92–100.  https://doi.org/10.7453/gahmj.2012.1.1.016 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125(8):1747–1754.  https://doi.org/10.1002/ijc.24439 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumor Res 1970(13):1–27Google Scholar
  6. 6.
    Waldhauer I, Steinle A (2008) NK cells and cancer immunosurveillance. Oncogene 27:5932–5943.  https://doi.org/10.1038/onc.2008.267 CrossRefPubMedGoogle Scholar
  7. 7.
    Oiseth SJ, Aziz MS (2017) Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 3(10):250. Available at: http://jcmtjournal.com/article/view/2275 CrossRefGoogle Scholar
  8. 8.
    Yunis EJ, Martinez C, Smith J, Stutman O, Good RA (1969) Spontaneous mammary adenocarcinoma in mice: influence of thymectomy and reconstitution with thymus grafts or spleen cells. Cancer Res 29(1):174–178. Available at: http://cancerres.aacrjournals.org/content/29/1/174.abstract Google Scholar
  9. 9.
    Penn I (1988) Tumors of the immunocompromised patient. Annu Rev Med 39(1):63–73.  https://doi.org/10.1146/annurev.me.39.020188.000431 CrossRefGoogle Scholar
  10. 10.
    Stewart T, Tsai S-C, Grayson H, Henderson R, Opelz G (1995) Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346(8978):796–798.  https://doi.org/10.5555/uri:pii:S0140673695916180 CrossRefGoogle Scholar
  11. 11.
    Stutman O (1976) Immunodepression and malignancy. In: Klein G, Weinhouse S, Haddow A (eds) Advances in cancer research, vol 22. Academic Press, New York, pp 261–422.  https://doi.org/10.1016/S0065-230X(08)60179-7 CrossRefGoogle Scholar
  12. 12.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998.  https://doi.org/10.1038/ni1102-991 CrossRefGoogle Scholar
  13. 13.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol 27:16–25.  https://doi.org/10.1016/j.coi.2014.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hanahan D, Weinberg RA (2011) Review hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedGoogle Scholar
  15. 15.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437.  https://doi.org/10.1038/nm.3394 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Colangelo T, Polcaro G, Muccillo L et al (2017) Friend or foe?: The tumour microenvironment dilemma in colorectal cancer. Biochim Biophys Acta 1867(1):1–18.  https://doi.org/10.1016/j.bbcan.2016.11.001 CrossRefGoogle Scholar
  17. 17.
    Alberts B, Johnson A, Lewis J et al (2009) Molecular biology of the cell, 5th edn. Garland Science Taylor and Francis, New YorkGoogle Scholar
  18. 18.
    Tonegawa S, Steinberg C, Dube S, Bernardini A (1974) Evidence for somatic generation of antibody diversity. Proc Natl Acad Sci 71(10):4027–4031. Available at: http://www.pnas.org/content/71/10/4027.abstract CrossRefGoogle Scholar
  19. 19.
    Ravi M, Govind P, Shruti B et al (2010) Receptors and signaling mechanisms for B-lymphocyte activation, proliferation and differentiation – insights from both in vivo and in vitro approaches. FEBS Lett 584(24):4883–4894.  https://doi.org/10.1016/j.febslet.2010.08.022 CrossRefGoogle Scholar
  20. 20.
    Schatz DG, Ji Y (2011) Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 11:251–263.  https://doi.org/10.1038/nri2941 CrossRefGoogle Scholar
  21. 21.
    Teng G, Papavasiliou FN (2007) Immunoglobulin somatic hypermutation. Annu Rev Genet 41(1):107–120.  https://doi.org/10.1146/annurev.genet.41.110306.130340 CrossRefGoogle Scholar
  22. 22.
    Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF, Di Noia JM (2016) Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 16:164–176.  https://doi.org/10.1038/nri.2016.2 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao Y, Niu C, Cui J (2018) Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 16:3.  https://doi.org/10.1186/s12967-017-1378-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022.  https://doi.org/10.1038/ni.2703 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271.  https://doi.org/10.1146/annurev-immunol-031210-101324 CrossRefGoogle Scholar
  26. 26.
    Vinay DS, Ryan EP, Pawelec G et al (2015) Seminars in cancer biology immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S198.  https://doi.org/10.1016/j.semcancer.2015.03.004 CrossRefGoogle Scholar
  27. 27.
    Liu K, Caldwell SA, Abrams SI (2005) Immune selection and emergence of aggressive tumor variants as negative consequences of Fas-mediated cytotoxicity and altered IFN-γ-regulated gene expression. Cancer Res 65(10):4376–4388. Available at: http://cancerres.aacrjournals.org/content/65/10/4376.abstract CrossRefGoogle Scholar
  28. 28.
    Yang L, Pang Y, Moses HL (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227.  https://doi.org/10.1016/j.it.2010.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalinski P (2012) Regulation of immune responses by prostaglandin E(2). J Immunol 188(1):21–28.  https://doi.org/10.4049/jimmunol.1101029 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180(9):5771–5777. Available at: http://www.jimmunol.org/content/180/9/5771.abstract CrossRefGoogle Scholar
  31. 31.
    Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367(2):103–107.  https://doi.org/10.1016/j.canlet.2015.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Oft M (2014) IL-10: master switch from tumor-promoting inflammation to antitumor immunity. Cancer Immunol Res 2(3):194–199. Available at: http://cancerimmunolres.aacrjournals.org/content/2/3/194.abstract CrossRefGoogle Scholar
  33. 33.
    Blank C, Mackensen A (2007) Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother 56(5):739–745.  https://doi.org/10.1007/s00262-006-0272-1 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Walker LSK (2013) Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 45:49–57.  https://doi.org/10.1016/j.jaut.2013.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Uyttenhove C, Pilotte L, Théate I et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274.  https://doi.org/10.1038/nm934 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grimm M, Kim M, Rosenwald A et al (2010) Tumour-mediated TRAIL-receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer 46(12):2314–2323.  https://doi.org/10.1016/j.ejca.2010.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    De Maria R, Testi R (1998) Fas-FasL interactions: a common pathogenetic mechanism in organ-specific autoimmunity. Immunol Today 19(3):121–125.  https://doi.org/10.1016/S0167-5699(98)80010-8 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192.  https://doi.org/10.1200/JCO.2008.18.7229 CrossRefGoogle Scholar
  39. 39.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174.  https://doi.org/10.1038/nri2506 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stewart TJ, Abrams SI (2008) How tumours escape mass destruction. Oncogene 27(45):5894–5903.  https://doi.org/10.1038/onc.2008.268 CrossRefGoogle Scholar
  41. 41.
    Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220.  https://doi.org/10.1016/j.it.2016.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964.  https://doi.org/10.1038/nri1733 CrossRefGoogle Scholar
  43. 43.
    Woo S-R, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33(1):445–474.  https://doi.org/10.1146/annurev-immunol-032414-112043 CrossRefGoogle Scholar
  44. 44.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723.  https://doi.org/10.1016/j.cell.2017.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zelenay S, Van Der Veen AG, Böttcher JP et al (2015) Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162(6):1257–1270.  https://doi.org/10.1016/j.cell.2015.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37(1):41–52.  https://doi.org/10.1016/j.it.2015.11.008 CrossRefGoogle Scholar
  47. 47.
    Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192(12):5451–5458. Available at: http://www.jimmunol.org/content/192/12/5451.abstract CrossRefGoogle Scholar
  48. 48.
    Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68. Available at: http://science.sciencemag.org/content/348/6230/62.abstract CrossRefGoogle Scholar
  49. 49.
    Smith AJ, Oertle J, Warren D, Prato D (2016) Chimeric antigen receptor (CAR) T cell therapy for malignant cancers: summary and perspective. J Cell Immunother 2(2):59–68.  https://doi.org/10.1016/j.jocit.2016.08.001 CrossRefGoogle Scholar
  50. 50.
    Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518.  https://doi.org/10.1056/NEJMoa1215134 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348(6230):56–61. Available at: http://science.sciencemag.org/content/348/6230/56.abstract CrossRefGoogle Scholar
  52. 52.
    Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214.  https://doi.org/10.1016/j.cell.2015.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD (2017) Combination immunotherapy: a road map. J Immunother Cancer 5:16.  https://doi.org/10.1186/s40425-017-0218-5 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhu Y, Knolhoff BL, Meyer MA et al (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–5069. Available at: http://cancerres.aacrjournals.org/content/74/18/5057.abstract CrossRefGoogle Scholar
  55. 55.
    Weiskopf K, Jahchan NS, Schnorr PJ et al (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126(7):2610–2620.  https://doi.org/10.1172/JCI81603 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Champalimaud Centre for the Unknown, Champalimaud FoundationLisbonPortugal

Personalised recommendations