Advertisement

Cell Metabolism in Cancer: An Energetic Switch

  • Inês Pimenta de Castro
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Over the years, cancer has been viewed as a genetic disorder caused by an unbalance in proliferation. However, recent evidence has suggested that cancer is also a metabolic disease. Growing tumors rewire their metabolic programs to meet and even exceed the bioenergetic and biosynthetic demands of continuous cell growth. The metabolic profile typically seen in cancer cells includes increased consumption of glucose and glutamine, high levels of glycolysis, changes in the use of metabolic enzyme isoforms, and an enormous amounts of lactate secretion. Reinforcing the idea that cancer is, indeed, a metabolic disease, oncogenes and tumor suppressors have been shown to have roles in cancer-associated changes in metabolism as well. This chapter discusses recent research in the field of cancer metabolism, looking to find answers for the following questions: What characterizes the metabolic signature of a cancer cell? Why do cancer cells shift their metabolism? Are these changes a consequence or a driver of cancer progression? Can cancer metabolism be targeted to benefit patients?

References

  1. 1.
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Skoura E, Datseris IE, Platis I, Oikonomopoulos G, Syrigos KN (2012) Role of positron emission tomography in the early prediction of response to chemotherapy in patients with non--small-cell lung cancer. Clin Lung Cancer 13(3):181–187CrossRefGoogle Scholar
  5. 5.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297–308PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464PubMedCrossRefGoogle Scholar
  9. 9.
    Toole BP (2000) Hyaluronan is not just a goo! J Clin Invest 106(3):335–336PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ et al (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tibbetts AS, Appling DR (2010) Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81CrossRefGoogle Scholar
  12. 12.
    Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23(5):537–548PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95CrossRefGoogle Scholar
  15. 15.
    Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27(20):2801–2809CrossRefGoogle Scholar
  16. 16.
    Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37(16):5633–5642CrossRefGoogle Scholar
  18. 18.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661CrossRefGoogle Scholar
  19. 19.
    Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342CrossRefGoogle Scholar
  20. 20.
    Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12(8):564–571PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thompson CB (2011) Rethinking the regulation of cellular metabolism. Cold Spring Harb Symp Quant Biol 76:23–29PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  24. 24.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Barthel A, Okino ST, Liao J, Nakatani K, Li J, Whitlock JP Jr et al (1999) Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J Biol Chem 274(29):20281–20286PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18(4):1437–1446PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272(28):17269–17275PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Benz MR, Herrmann K, Walter F, Garon EB, Reckamp KL, Figlin R et al (2011) (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med 52(11):1684–1689PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lheureux S, Lecerf C, Briand M, Louis MH, Dutoit S, Jebahi A et al (2013) (18)F-FDG is a surrogate marker of therapy response and tumor recovery after drug withdrawal during treatment with a dual PI3K/mTOR inhibitor in a preclinical model of cisplatin-resistant ovarian cancer. Transl Oncol 6(5):586–595PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Fernandez-Medarde A, Santos E (2011) Ras in cancer and developmental diseases. Genes Cancer 2(3):344–358PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Murakami T, Nishiyama T, Shirotani T, Shinohara Y, Kan M, Ishii K et al (1992) Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem 267(13):9300–9306Google Scholar
  33. 33.
    Fontenelle LJ, Henderson JF (1969) Sources of nitrogen as rate-limiting factors for purine biosynthesis de novo in Ehrlich ascites tumor cells. Biochim Biophys Acta 177(1):88–93CrossRefGoogle Scholar
  34. 34.
    Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F (2009) Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One 4(3):e4715PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Masciullo V, Khalili K, Giordano A (2000) The Rb family of cell cycle regulatory factors: clinical implications. Int J Oncol 17(5):897–902PubMedPubMedCentralGoogle Scholar
  36. 36.
    Reynolds MR, Lane AN, Robertson B, Kemp S, Liu Y, Hill BG et al (2014) Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 33(5):556–566PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105(48):18782–18787PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Eberhardy SR, Farnham PJ (2001) c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 276(51):48562–48571CrossRefGoogle Scholar
  40. 40.
    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG et al (2008) Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7(15):2392–2400PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Conrad M, Sato H (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (−): cystine supplier and beyond. Amino Acids 42(1):231–246PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D (2014) Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157(5):1088–1103PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416CrossRefGoogle Scholar
  45. 45.
    Kung HN, Marks JR, Chi JT (2011) Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet 7(8):e1002229PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Osada T, Nagashima I, Tsuno NH, Kitayama J, Nagawa H (2000) Prognostic significance of glutamine synthetase expression in unifocal advanced hepatocellular carcinoma. J Hepatol 33(2):247–253PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T et al (2010) Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 126(12):2762–2772PubMedPubMedCentralGoogle Scholar
  49. 49.
    Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6(5):373–390PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792CrossRefGoogle Scholar
  51. 51.
    Phang JM, Donald SP, Pandhare J, Liu Y (2008) The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 35(4):681–690CrossRefGoogle Scholar
  52. 52.
    Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW et al (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109(23):8983–8988PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C et al (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D et al (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res 61(5):1810–1815Google Scholar
  55. 55.
    Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A, Phang JM (2012) Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments. Cancer Res 72(14):3677–3686PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49(23):6449–6465Google Scholar
  57. 57.
    Kerr MC, Teasdale RD (2009) Defining macropinocytosis. Traffic 10(4):364–371CrossRefGoogle Scholar
  58. 58.
    Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S et al (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Krajcovic M, Krishna S, Akkari L, Joyce JA, Overholtzer M (2013) mTOR regulates phagosome and entotic vacuole fission. Mol Biol Cell 24(23):3736–3745PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stolzing A, Grune T (2004) Neuronal apoptotic bodies: phagocytosis and degradation by primary microglial cells. FASEB J 18(6):743–745PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T et al (2014) Competition between human cells by entosis. Cell Res 24(11):1299–1310PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148(1–2):24–28PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42(4):426–437PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shi L, Tu BP (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110(18):7318–7323PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S et al (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20(2):306–319PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chiang EP, Wang YC, Chen WW, Tang FY (2009) Effects of insulin and glucose on cellular metabolic fluxes in homocysteine transsulfuration, remethylation, S-adenosylmethionine synthesis, and global deoxyribonucleic acid methylation. J Clin Endocrinol Metab 94(3):1017–1025PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222–226PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Towbin BD, Gonzalez-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P et al (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150(5):934–947PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800CrossRefGoogle Scholar
  71. 71.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953PubMedCrossRefGoogle Scholar
  72. 72.
    Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S et al (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69(1):49–54PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 108(1):314–318CrossRefGoogle Scholar
  75. 75.
    Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H et al (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26(12):1326–1338PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Leweling H et al (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55(6):1373–1378Google Scholar
  78. 78.
    Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M et al (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9):3812–3819PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011) Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 39(2):453–463Google Scholar
  81. 81.
    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R et al (2006) Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107(5):2013–2021CrossRefGoogle Scholar
  82. 82.
    Carmona-Fontaine C, Bucci V, Akkari L, Deforet M, Joyce JA, Xavier JB (2013) Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci U S A 110(48):19402–19407PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H et al (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8(5):353–360CrossRefGoogle Scholar
  85. 85.
    Schmid SA, Gaumann A, Wondrak M, Eckermann C, Schulte S, Mueller-Klieser W et al (2007) Lactate adversely affects the in vitro formation of endothelial cell tubular structures through the action of TGF-beta1. Exp Cell Res 313(12):2531–2549CrossRefGoogle Scholar
  86. 86.
    Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verrax J, Kennedy KM et al (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3):e33418PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Stern R, Shuster S, Neudecker BA, Formby B (2002) Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res 276(1):24–31PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev 26(2):299–310PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14(2):176–186PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M, Weber E et al (2013) Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15(10):1125–1137PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10(4):267–277CrossRefGoogle Scholar
  93. 93.
    Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10(9):671–684CrossRefGoogle Scholar
  94. 94.
    Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D et al (2010) Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329(5998):1492–1499CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Inês Pimenta de Castro
    • 1
  1. 1.FairJourney BiologicsPortoPortugal

Personalised recommendations