Advertisement

Genomic Instability: DNA Repair and Cancer

  • Ana Rita CarlosEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

Genomic instability emerges due to accumulation of mutations in the genome, preventing the normal structure and function of the chromosomes. This genomic instability may arise from hereditary mutations or may be associated with DNA damage caused either by endogenous (e.g. replication problems) or exogenous (e.g. radiation) agents. To counter this, cells have evolved various strategies that aim at detecting and repairing DNA damage or at eliminating cells with overt damage. When these strategies fail genomic instability prevails and underlies the hallmark that are key for cancer development.

References

  1. 1.
    Brown TA (2002) Genomes. Wiley-Liss, Oxford. http://www.ncbi.nlm.nih.gov/pubmed/20821850. Accessed 7 June 2018Google Scholar
  2. 2.
    Ezkurdia I, Juan D, Rodriguez JM et al (2014) Multiple evidence strands suggest that there may be as few as 19 000 human protein-coding genes. Hum Mol Genet 23(22):5866–5878.  https://doi.org/10.1093/hmg/ddu309 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13(12):878–890.  https://doi.org/10.1038/nrg3275 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lodish HF (2008) Molecular cell biology, 6th edn. W.H. Freeman, New YorkGoogle Scholar
  5. 5.
    Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85.  https://doi.org/10.1146/annurev.biochem.73.011303.073723 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386(6627):761–763.  https://doi.org/10.1038/386761a0 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33.  https://doi.org/10.1038/nrc.2015.2 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294.  https://doi.org/10.1038/nature10760 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-Strand break. Trends Cell Biol 26(1):52–64.  https://doi.org/10.1016/j.tcb.2015.07.009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zimmermann M, de Lange T (2014) 53BP1: pro choice in DNA repair. Trends Cell Biol 24(2):108–117.  https://doi.org/10.1016/j.tcb.2013.09.003 CrossRefGoogle Scholar
  11. 11.
    Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506.  https://doi.org/10.1038/nrm.2017.48 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wood RD, Doublié S (2016) DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair (Amst) 44:22–32.  https://doi.org/10.1016/j.dnarep.2016.05.003 CrossRefGoogle Scholar
  13. 13.
    Bhargava R, Onyango DO, Stark JM (2016) Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 32(9):566–575.  https://doi.org/10.1016/j.tig.2016.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682–3695.  https://doi.org/10.1016/j.febslet.2010.07.029 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Huertas P (2010) DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17(1):11–16.  https://doi.org/10.1038/nsmb.1710 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mimitou EP, Symington LS (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983–995.  https://doi.org/10.1016/j.dnarep.2009.04.017 CrossRefGoogle Scholar
  17. 17.
    Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50(4):589–600.  https://doi.org/10.1016/j.molcel.2013.04.032 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Godin SK, Sullivan MR, Bernstein KA (2016) Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 94(5):407–418.  https://doi.org/10.1139/bcb-2016-0012 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suwaki N, Klare K, Tarsounas M (2011) RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 22(8):898–905.  https://doi.org/10.1016/j.semcdb.2011.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wyatt HDM, West SC (2014) Holliday junction resolvases. Cold Spring Harb Perspect Biol 6(9):a023192–a023192.  https://doi.org/10.1101/cshperspect.a023192 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Beucher A, Birraux J, Tchouandong L et al (2009) ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 28(21):3413–3427.  https://doi.org/10.1038/emboj.2009.276 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T (2015) 53BP1 and the LINC complex promote microtubule-dependent DSB mobility and DNA repair. Cell 163(4):880–893.  https://doi.org/10.1016/j.cell.2015.09.057 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Biehs R, Steinlage M, Barton O et al (2017) DNA double-strand break resection occurs during non-homologous end joining in G1 but is distinct from resection during homologous recombination. Mol Cell 65(4):671–684.e5.  https://doi.org/10.1016/j.molcel.2016.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Soulas-Sprauel P, Rivera-Munoz P, Malivert L et al (2007) V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26(56):7780–7791.  https://doi.org/10.1038/sj.onc.1210875 CrossRefGoogle Scholar
  25. 25.
    Han L, Yu K (2008) Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV–deficient B cells. J Exp Med 205(12):2745–2753.  https://doi.org/10.1084/jem.20081623 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev 10(12):1433–1442.  https://doi.org/10.1101/GAD.10.12.1433 CrossRefGoogle Scholar
  27. 27.
    Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631.  https://doi.org/10.1038/nrg2380 CrossRefGoogle Scholar
  28. 28.
    Blackford AN, Jackson SP (2017) ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66(6):801–817. doi:S1097-2765(17)30354-4 [pii].  https://doi.org/10.1016/j.molcel.2017.05.015
  29. 29.
    Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308.  https://doi.org/10.1038/nrm2351 CrossRefGoogle Scholar
  30. 30.
    Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210.  https://doi.org/10.1038/nrm3546 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467.  https://doi.org/10.1074/jbc.C100466200 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Reinhardt HC, Yaffe MB (2009) Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 21(2):245–255.  https://doi.org/10.1016/j.ceb.2009.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Carvajal LA, Manfredi JJ (2013) Another fork in the road—life or death decisions by the tumour suppressor p53. EMBO Rep 14(5):414–421.  https://doi.org/10.1038/embor.2013.25 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14(5):359–370.  https://doi.org/10.1038/nrc3711 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sulli G, Di Micco R, di Fagagna F d’A (2012) Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer 12(10):709–720.  https://doi.org/10.1038/nrc3344 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kidiyoor GR, Kumar A, Foiani M (2016) ATR-mediated regulation of nuclear and cellular plasticity. DNA Repair (Amst) 44:143–150.  https://doi.org/10.1016/j.dnarep.2016.05.020 CrossRefGoogle Scholar
  37. 37.
    Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11(3):208–219.  https://doi.org/10.1038/nrm2852 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9(10):749–758.  https://doi.org/10.1038/nrc2723 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13(1):49–58. http://www.ncbi.nlm.nih.gov/pubmed/12507556. Accessed 8 June 2018CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lane DP (1992) p53, guardian of the genome. Nature 358(6381):15–16.  https://doi.org/10.1038/358015a0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283.  https://doi.org/10.1038/nrm2147 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9(10):724–737.  https://doi.org/10.1038/nrc2730 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94.  https://doi.org/10.1038/nrm3735 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408.  https://doi.org/10.1038/nrc3960 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011. doi:S0092-8674(17)30546-9 [pii].  https://doi.org/10.1016/j.cell.2017.05.015
  46. 46.
    Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334.  https://doi.org/10.1146/annurev.genet.41.110306.130350 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Martínez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11(3):161–176.  https://doi.org/10.1038/nrc3025 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    de Lange T (2009) How telomeres solve the end-protection problem. Science 326(5955):948–952.  https://doi.org/10.1126/science.1170633 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11(3):171–181.  https://doi.org/10.1038/nrm2848 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Doksani Y, de Lange T (2014) The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb Perspect Biol 6(12):a016576–a016576.  https://doi.org/10.1101/cshperspect.a016576 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18(3):175–186.  https://doi.org/10.1038/nrm.2016.171 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556. http://www.ncbi.nlm.nih.gov/pubmed/12956959. Accessed 8 June 2018CrossRefGoogle Scholar
  53. 53.
    di Fagagna F d’A, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426(6963):194–198.  https://doi.org/10.1038/nature02118 CrossRefGoogle Scholar
  54. 54.
    Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100(3):776–781.  https://doi.org/10.1073/pnas.0334858100 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefGoogle Scholar
  56. 56.
    Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228.  https://doi.org/10.1038/nrm2858 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Muller PAJ, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8.  https://doi.org/10.1038/ncb2641 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Callaway E (2015) How elephants avoid cancer. Nature.  https://doi.org/10.1038/nature.2015.18534
  59. 59.
    Lord CJ, Tutt ANJ, Ashworth A (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 66(1):455–470.  https://doi.org/10.1146/annurev-med-050913-022545 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sonnenblick A, de Azambuja E, Azim HA, Piccart M (2015) An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol 12(1):27–41.  https://doi.org/10.1038/nrclinonc.2014.163 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Gulbenkian CiênciaOeirasPortugal

Personalised recommendations