Advertisement

The Cell Cycle, Cytoskeleton and Cancer

  • Irina S. FonsecaEmail author
  • Mónica Bettencourt-DiasEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter is focused in the basics of the cell cycle and its deregulation in cancer. We begin this chapter by giving an historical perspective on the discovery of key component of the cell cycle, the cyclins and cyclin-dependent kinases (CDK) and the concept of checkpoints. The eukaryotic cell cycle will be reviewed, starting with a brief description of the cell cycle phases, the main cell cycle regulators, the cyclins and CDKs, and how they control the cell cycle. Next, we discuss the cell cycle checkpoints and DNA repair mechanisms. Later, we describe the cell cycle in cancer, and how tumor cells take advantage of cellular protective mechanisms to become malignant, focusing on the concept of tumor suppressor genes and oncogenes related to cell cycle progression. Finally, we focus on a particular structure, the centrosome, which is the major microtubule-organizing center in animal cells, and how its deregulation can promote tumorigenesis. We conclude this chapter by discussing therapeutic targets that are being used to eradicate cancer cells having abnormal centrosomes.

References

  1. 1.
    Gest H (2004) The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec R Soc 58(2):187–201.  https://doi.org/10.1098/rsnr.2004.0055 PubMedGoogle Scholar
  2. 2.
    Byers JM (1989) Rudolf Virchow–father of cellular pathology. Am J Clin Pathol 92(December):S2–S8PubMedGoogle Scholar
  3. 3.
    Virchow R (1859) Cellular pathology as based upon physiolocal and pathological history.  https://doi.org/10.5962/bhl.title.32770 Google Scholar
  4. 4.
    Simanis V, Nurse P (1986) The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45(2):261–268.  https://doi.org/10.1016/0092-8674(86)90390-9 PubMedGoogle Scholar
  5. 5.
    Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9(11):910–916.  https://doi.org/10.1038/nrm2510 PubMedGoogle Scholar
  6. 6.
    Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396.  https://doi.org/10.1016/0092-8674(83)90420-8 PubMedGoogle Scholar
  7. 7.
    Machetel P, Weber P (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature 350(6313):55–57.  https://doi.org/10.1038/350055a0 Google Scholar
  8. 8.
    Hartwell LH, Culotti J, Reid B (1970) Genetic control of the cell-division cycle in yeast, I. Detection of mutants. Proc Natl Acad Sci 66(2):352–359.  https://doi.org/10.1073/pnas.66.2.352 PubMedGoogle Scholar
  9. 9.
    Heng Y-W, Koh C-G (2010) Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol 42(10):1622–1633.  https://doi.org/10.1016/j.biocel.2010.04.007 PubMedGoogle Scholar
  10. 10.
    Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234.  https://doi.org/10.1016/S0092-8674(03)01080-8 PubMedGoogle Scholar
  11. 11.
    Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641.  https://doi.org/10.1016/j.tibs.2005.09.005 PubMedGoogle Scholar
  12. 12.
    Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122.  https://doi.org/10.1186/gb4184 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Suryadinata R, Sadowski M, Sarcevic B (2010) Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci Rep 30(4):243–255.  https://doi.org/10.1042/BSR20090171 PubMedGoogle Scholar
  14. 14.
    Deibler RW, Kirschner MW (2010) Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol Cell 37(6):753–767.  https://doi.org/10.1016/j.molcel.2010.02.023 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Coleman TR, Dunphy WG (1994) Cdc2 regulatory factors. Curr Opin Cell Biol 6(6):877–882.  https://doi.org/10.1016/0955-0674(94)90060-4 PubMedGoogle Scholar
  16. 16.
    Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12.  https://doi.org/10.1186/1747-1028-2-12 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Lew DJ, Kornbluth S (1996) Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8(6):795–804.  https://doi.org/10.1016/S0955-0674(96)80080-9 PubMedGoogle Scholar
  18. 18.
    Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28(33):2925–2939.  https://doi.org/10.1038/onc.2009.170 PubMedGoogle Scholar
  19. 19.
    Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166.  https://doi.org/10.1038/nrc2602 PubMedGoogle Scholar
  20. 20.
    Stamatakos M, Palla V, Karaiskos I et al (2010) Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 8(1):111.  https://doi.org/10.1186/1477-7819-8-111 PubMedPubMedCentralGoogle Scholar
  21. 21.
    Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17):2909–2915.  https://doi.org/10.1038/sj.onc.1208618 PubMedGoogle Scholar
  22. 22.
    Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1(3):222–231.  https://doi.org/10.1038/35106065 PubMedGoogle Scholar
  23. 23.
    Medema RH, MacŮrek L (2012) Checkpoint control and cancer. Oncogene 31(21):2601–2613.  https://doi.org/10.1038/onc.2011.451 PubMedGoogle Scholar
  24. 24.
    El-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8(5):345–357.  https://doi.org/10.1006/scbi.1998.0097 PubMedGoogle Scholar
  25. 25.
    El-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75(4):817–825.  https://doi.org/10.1016/0092-8674(93)90500-P PubMedGoogle Scholar
  26. 26.
    Laiho M, Latonen L (2003) Cell cycle control, DNA damage checkpoints and cancer. Ann Med 35(6):391–397.  https://doi.org/10.1080/07853890310014605 PubMedGoogle Scholar
  27. 27.
    Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323.  https://doi.org/10.1038/nature03097 PubMedGoogle Scholar
  28. 28.
    Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes and Cancer 2(4):466–474.  https://doi.org/10.1177/1947601911408889 PubMedGoogle Scholar
  29. 29.
    Clancy BS, Education PDN (2008) DNA damage & repair : mechanisms for maintaining DNA integrity. Nat Educ 1(1):1–4. doi:citeulike-article-id:5769371Google Scholar
  30. 30.
    Zhou BBS, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439.  https://doi.org/10.1038/35044005 PubMedGoogle Scholar
  31. 31.
    Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73(1):39–85.  https://doi.org/10.1146/annurev.biochem.73.011303.073723 PubMedGoogle Scholar
  32. 32.
    Hefferin ML, Tomkinson AE (2005) Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 4(6):639–648.  https://doi.org/10.1016/j.dnarep.2004.12.005 Google Scholar
  33. 33.
    Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27(4):589–605.  https://doi.org/10.1038/emboj.2008.15 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22).  https://doi.org/10.1016/j.cub.2012.10.006
  35. 35.
    Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393.  https://doi.org/10.1038/nrm2163 PubMedGoogle Scholar
  36. 36.
    Bharadwaj R, Yu H (2004) The spindle checkpoint, aneuploidy, and cancer. Oncogene 23(11):2016–2027.  https://doi.org/10.1038/sj.onc.1207374 PubMedGoogle Scholar
  37. 37.
    Marques S, Fonseca J, Silva PMA, Bousbaa H (2015) Targeting the spindle assembly checkpoint for breast cancer treatment. Curr Cancer Drug Targets 15(4):272–281PubMedGoogle Scholar
  38. 38.
    Adamson ED (1987) Oncogenes in development. Development 99(4):449–471. http://www.ncbi.nlm.nih.gov/pubmed/2822372 PubMedGoogle Scholar
  39. 39.
    Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3(8):448–457.  https://doi.org/10.1038/ncponc0558 PubMedGoogle Scholar
  40. 40.
    Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10(7):699–703.  https://doi.org/10.1093/hmg/10.7.699 PubMedGoogle Scholar
  41. 41.
    Dryja TP, Rapaport JM, Joyce JM, Petersen RA (1986) Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A 83(19):7391–7394.  https://doi.org/10.1073/pnas.83.19.7391 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Goodrich DW, Wang NP, Qian Y-W, Lee EY-HP, Lee W-H (1991) The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67(2):293–302.  https://doi.org/10.1016/0092-8674(91)90181-W PubMedGoogle Scholar
  43. 43.
    Murphree AL, Benedict WF (1984) Retinoblastoma: clues to human oncogenesis. Science 223(4640):1028–1033.  https://doi.org/10.1126/science.6320372 PubMedGoogle Scholar
  44. 44.
    Lohmann DR, Gallie BL (2004) Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet 129C(1):23–28.  https://doi.org/10.1002/ajmg.c.30024 PubMedGoogle Scholar
  45. 45.
    Cance WG, Brennan MF, Dudas ME, Huang CM, Cordon-Cardo C (1990) Altered expression of the retinoblastoma gene product in human sarcomas. N Engl J Med 323(21):1457–1462.  https://doi.org/10.1056/NEJM199011223232105 PubMedGoogle Scholar
  46. 46.
    Reissmann PT, Simon MA, Lee WH, Slamon DJ (1989) Studies of the retinoblastoma gene in human sarcomas. Oncogene 4(7):839–843PubMedGoogle Scholar
  47. 47.
    Wunder JS, Czitrom AA, Kandel R, Andrulis IL (1991) Analysis of alterations in the retinoblastoma gene and tumor grade in bone and soft-tissue sarcomas. J Natl Cancer Inst 83(3):194–200.  https://doi.org/10.1093/jnci/83.3.194 PubMedGoogle Scholar
  48. 48.
    Venter DJ, Bevan KL, Ludwig RL et al (1991) Retinoblastoma gene deletions in human glioblastomas. Oncogene 6(3):445–448PubMedGoogle Scholar
  49. 49.
    Ishikawa J, Xu HJ, Hu SX et al (1991) Inactivation of the retinoblastoma gene in human bladder and renal cell carcinomas. Cancer Res 51(20):5736–5743PubMedGoogle Scholar
  50. 50.
    Miyamoto H, Shuin T, Torigoe S, Iwasaki Y, Kubota Y (1995) Retinoblastoma gene mutations in primary human bladder cancer. Br J Cancer 71(4):831–835.  https://doi.org/10.1038/bjc.1995.160 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Varley JM, Armour J, Swallow JE et al (1989) The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours. Oncogene 4(6):725–729. http://www.ncbi.nlm.nih.gov/pubmed/2543943 PubMedGoogle Scholar
  52. 52.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799.  https://doi.org/10.1038/nm1087 PubMedGoogle Scholar
  53. 53.
    Yee KS, Vousden KH (2005) Complicating the complexity of p53. Carcinogenesis 26(8):1317–1322.  https://doi.org/10.1093/carcin/bgi122 PubMedGoogle Scholar
  54. 54.
    Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412.  https://doi.org/10.1038/nrm2395 PubMedGoogle Scholar
  55. 55.
    Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130.  https://doi.org/10.1038/nature07986 PubMedPubMedCentralGoogle Scholar
  56. 56.
    Milner J, Medcalf EA, Cook AC (1991) Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol Cell Biol 11(1):12–19.  https://doi.org/10.1128/MCB.11.1.12 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Milner J, Medcalf EA (1991) Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65(5):765–774.  https://doi.org/10.1016/0092-8674(91)90384-B PubMedGoogle Scholar
  58. 58.
    Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60(3):319–326.  https://doi.org/10.1007/s00262-010-0968-0 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  60. 60.
    Boveri T (1887) Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anat Anz 2(688–693):1887Google Scholar
  61. 61.
    Van Beneden E, Neyt A (1887) Nouvelles recherches sur la fécondation et la division mitosique chez l’Ascaride mégalocéphale. Bull Acad R Belgique 3éme sér 14:215–295Google Scholar
  62. 62.
    Gould RR, Borisy GG (1977) The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol 73(3):601–615.  https://doi.org/10.1083/jcb.73.3.601 PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8(6):451–463.  https://doi.org/10.1038/nrm2180 PubMedGoogle Scholar
  64. 64.
    Stevens NR, Raposo AASF, Basto R, St Johnston D, Raff JW (2007) From stem cell to embryo without centrioles. Curr Biol 17(17):1498–1503.  https://doi.org/10.1016/j.cub.2007.07.060 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Vinogradova T, Paul R, Grimaldi AD et al (2012) Concerted effort of centrosomal and Golgi-derived microtubules is required for proper Golgi complex assembly but not for maintenance. Mol Biol Cell 23(5):820–833.  https://doi.org/10.1091/mbc.E11-06-0550 PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955.  https://doi.org/10.1038/nature08435 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M (2011) Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 194(2):165–175.  https://doi.org/10.1083/jcb.201011152 PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hodges ME, Wickstead B, Gull K, Langdale JA (2012) The evolution of land plant cilia. New Phytol 195(3):526–540.  https://doi.org/10.1111/j.1469-8137.2012.04197.x PubMedGoogle Scholar
  69. 69.
    Bettencourt-Dias M, Rodrigues-Martins A, Carpenter L et al (2005) SAK/PLK4 is required for centriole duplication and flagella development. Curr Biol 15(24):2199–2207.  https://doi.org/10.1016/j.cub.2005.11.042 PubMedGoogle Scholar
  70. 70.
    Habedanck R, Stierhof Y-D, Wilkinson CJ, Nigg E (2005) a. The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–1146.  https://doi.org/10.1038/ncb1320 PubMedGoogle Scholar
  71. 71.
    Azimzadeh J, Marshall WF (2010) Building the centriole. Curr Biol 20(18).  https://doi.org/10.1016/j.cub.2010.08.010
  72. 72.
    Gönczy P (2012) Towards a molecular architecture of centriole assembly. Nat Rev Mol Cell Biol 13(7):425–435.  https://doi.org/10.1038/nrm3373 PubMedGoogle Scholar
  73. 73.
    Brito DA, Gouveia SM, Bettencourt-Dias M (2012) Deconstructing the centriole: Structure and number control. Curr Opinion Cell Biol 24.  https://doi.org/10.1016/j.ceb.2012.01.003
  74. 74.
    Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7(8):1122–1144.  https://doi.org/10.7150/ijbs.7.1122 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Marthiens V, Rujano MA, Pennetier C, Tessier S, Paul-Gilloteaux P, Basto R (2013) Centrosome amplification causes microcephaly. Nat Cell Biol 15(7):731–740.  https://doi.org/10.1038/ncb2746 PubMedGoogle Scholar
  76. 76.
    Basto R, Brunk K, Vinadogrova T et al (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133(6):1032–1042.  https://doi.org/10.1016/j.cell.2008.05.039 PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kayser G, Gerlach U, Walch A et al (2005) Numerical and structural centrosome aberrations are an early and stable event in the adenoma-carcinoma sequence of colorectal carcinomas. Virchows Arch 447(1):61–65.  https://doi.org/10.1007/s00428-004-1191-1 PubMedGoogle Scholar
  78. 78.
    Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678.  https://doi.org/10.1016/j.cell.2009.10.036 PubMedGoogle Scholar
  79. 79.
    Denu RA, Zasadil LM, Kanugh C, Laffin J, Weaver BA, Burkard ME (2016) Centrosome amplification induces high grade features and is prognostic of worse outcomes in breast cancer. BMC Cancer 16(1):47.  https://doi.org/10.1186/s12885-016-2083-x PubMedPubMedCentralGoogle Scholar
  80. 80.
    Nolte F, Giehl M, Haass W et al (2013) Centrosome aberrations in bone marrow cells from patients with myelodysplastic syndromes correlate with chromosomal instability. Ann Hematol 92(10):1325–1333.  https://doi.org/10.1007/s00277-013-1772-7 PubMedGoogle Scholar
  81. 81.
    Pannu V, Mittal K, Cantuaria G et al (2015) Rampant centrosome amplification underlies more aggressive disease course of triple negative breast cancers. Oncotarget 6(12):10487–10497.  https://doi.org/10.18632/oncotarget.3402 PubMedPubMedCentralGoogle Scholar
  82. 82.
    Yamamoto Y, Misumi T, Eguchi S et al (2011) Centrosome amplification as a putative prognostic biomarker for the classification of urothelial carcinomas. Hum Pathol 42(12):1923–1930.  https://doi.org/10.1016/j.humpath.2011.02.013 PubMedGoogle Scholar
  83. 83.
    Zyss D, Gergely F (2009) Centrosome function in cancer: guilty or innocent? Trends Cell Biol 19(7):334–346.  https://doi.org/10.1016/j.tcb.2009.04.001 PubMedGoogle Scholar
  84. 84.
    Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc B Biol Sci 369(1650):20130467–20130467.  https://doi.org/10.1098/rstb.2013.0467 Google Scholar
  85. 85.
    Nigg EA (2006) Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 119(12):2717–2723.  https://doi.org/10.1002/ijc.22245 PubMedGoogle Scholar
  86. 86.
    Ring D, Hubble R, Kirschner M (1982) Mitosis in a cell with multiple centrioles. J Cell Biol 94(3):549–556.  https://doi.org/10.1083/jcb.94.3.549 PubMedGoogle Scholar
  87. 87.
    Macmillan JC, Hudson JW, Bull S, Dennis JW, Swallow CJ (2001) Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann Surg Oncol 8(9):729–740.  https://doi.org/10.1245/aso.2001.8.9.729 PubMedGoogle Scholar
  88. 88.
    Marina M (2014) Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci 19(2):352.  https://doi.org/10.2741/4212 Google Scholar
  89. 89.
    Serçin Ö, Larsimont JC, Karambelas AE et al (2016) Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis. Nat Cell Biol 18(1):100–110.  https://doi.org/10.1038/ncb3270 PubMedGoogle Scholar
  90. 90.
    Coelho PA, Bury L, Shahbazi MN et al (2015) Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 5(12):150209.  https://doi.org/10.1098/rsob.150209 PubMedPubMedCentralGoogle Scholar
  91. 91.
    Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271(5256):1744–1747.  https://doi.org/10.1126/science.271.5256.1744 PubMedGoogle Scholar
  92. 92.
    Godinho SA, Picone R, Burute M et al (2014) Oncogene-like induction of cellular invasion from centrosome amplification. Nature 510(7503):167–171.  https://doi.org/10.1038/nature13277.Oncogene-like PubMedPubMedCentralGoogle Scholar
  93. 93.
    Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A (2011) The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 10(10):1571–1581.  https://doi.org/10.4161/cc.10.10.15612 PubMedPubMedCentralGoogle Scholar
  94. 94.
    Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (1999) Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1(1):45–50.  https://doi.org/10.1038/9018 PubMedGoogle Scholar
  95. 95.
    Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2(11):815–825.  https://doi.org/10.1038/nrc924 PubMedGoogle Scholar
  96. 96.
    Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460(7252):278–282.  https://doi.org/10.1038/nature08136 PubMedPubMedCentralGoogle Scholar
  97. 97.
    Brinkley BR (2001) Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11(1):18–21.  https://doi.org/10.1016/S0962-8924(00)01872-9 PubMedGoogle Scholar
  98. 98.
    Cimini D (2008) Merotelic kinetochore orientation, aneuploidy, and cancer. Biochim Biophys Acta Rev Cancer 1786(1):32–40.  https://doi.org/10.1016/j.bbcan.2008.05.003 Google Scholar
  99. 99.
    Salmon ED, Cimini D, Cameron LA, DeLuca JG (2005) Merotelic kinetochores in mammalian tissue cells. Philos Trans R Soc B Biol Sci 360(1455):553–568.  https://doi.org/10.1098/rstb.2004.1610 Google Scholar
  100. 100.
    Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. J Cell Biol 152(3):517–527.  https://doi.org/10.1083/jcb.153.3.517 Google Scholar
  101. 101.
    Cimini D (2003) Merotelic kinetochore orientation occurs frequently during early mitosis in mammalian tissue cells and error correction is achieved by two different mechanisms. J Cell Sci 116(20):4213–4225.  https://doi.org/10.1242/jcs.00716 PubMedGoogle Scholar
  102. 102.
    Godinho SA, Kwon M, Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28(1–2):85–98.  https://doi.org/10.1007/s10555-008-9163-6 PubMedGoogle Scholar
  103. 103.
    Rhys AD, Godinho SA (2017) Dividing with extra centrosomes: a double edged sword for cancer cells. In: Advances in experimental medicine and biology. Vol. 1002. Cell division machinery and disease. Springer International Publishing, pp 47–67.  https://doi.org/10.1007/978-3-319-57127-0_3
  104. 104.
    Cao M, Zhong Q (2016) Cilia in autophagy and cancer. Cilia 5(1):4.  https://doi.org/10.1186/s13630-016-0027-3 PubMedPubMedCentralGoogle Scholar
  105. 105.
    Seeger-Nukpezah T, Little JL, Serzhanova V, Golemis EA (2013) Cilia and cilia-associated proteins in cancer. Drug Discov Today Dis Mech 10:e135–e142PubMedPubMedCentralGoogle Scholar
  106. 106.
    Basten SG, Giles RH (2013) Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia 2(1):6.  https://doi.org/10.1186/2046-2530-2-6 PubMedPubMedCentralGoogle Scholar
  107. 107.
    Yuan K, Frolova N, Xie Y et al (2010) Primary cilia are decreased in breast cancer: analysis of a collection of human breast cancer cell lines and tissues. J Histochem Cytochem 58(10):857–870.  https://doi.org/10.1369/jhc.2010.955856 PubMedPubMedCentralGoogle Scholar
  108. 108.
    Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL, McDermott KM (2013) Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS One 8(7).  https://doi.org/10.1371/journal.pone.0068521
  109. 109.
    Kim J, Dabiri S, Seeley ES (2011) Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS One 6(11).  https://doi.org/10.1371/journal.pone.0027410
  110. 110.
    Seeley ES, Carrière C, Goetze T, Longnecker DS, Korc M (2009) Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res 69(2):422–430.  https://doi.org/10.1158/0008-5472.CAN-08-1290 PubMedPubMedCentralGoogle Scholar
  111. 111.
    Bangs F, Anderson KV (2017) Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol 9(5).  https://doi.org/10.1101/cshperspect.a028175
  112. 112.
    Mukhopadhyay S, Wen X, Ratti N et al (2013) The ciliary G-protein-coupled receptor Gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell 152(1–2):210–223.  https://doi.org/10.1016/j.cell.2012.12.026 PubMedGoogle Scholar
  113. 113.
    Goetz SC, Anderson KV (2010) The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 11(5):331–344.  https://doi.org/10.1038/nrg2774 PubMedPubMedCentralGoogle Scholar
  114. 114.
    Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836):372–376.  https://doi.org/10.1126/science.1139740 PubMedGoogle Scholar
  115. 115.
    Sarkar FH, Li Y, Wang Z, Kong D (2010) The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev 29(3):383–394.  https://doi.org/10.1007/s10555-010-9233-4 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Wong SY, Seol AD, So PL et al (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15(9):1055–1061.  https://doi.org/10.1038/nm.2011 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wallingford JB, Mitchell B (2011) Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 25(3):201–213.  https://doi.org/10.1101/gad.2008011 PubMedPubMedCentralGoogle Scholar
  118. 118.
    Salisbury JL, Whitehead CM, Lingle WL, Barrett SL (1999) Centrosomes and cancer. Biol Cell 91(6):451–460.  https://doi.org/10.1016/S0248-4900(99)80086-0 PubMedGoogle Scholar
  119. 119.
    Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37(10):1125–1129.  https://doi.org/10.1038/ng1632 PubMedGoogle Scholar
  120. 120.
    Yoo YD, Kwon YT (2015) Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells. J Anal Sci Technol 6(1):28.  https://doi.org/10.1186/s40543-015-0071-4 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Mahjoub MR, Stearns T (2012) Supernumerary centrosomes nucleate extra cilia and compromise primary cilium signaling. Curr Biol 22(17):1628–1634.  https://doi.org/10.1016/j.cub.2012.06.057 PubMedPubMedCentralGoogle Scholar
  122. 122.
    Toftgård R (2009) Two sides to cilia in cancer. Nat Med 15(9):994–996.  https://doi.org/10.1038/nm0909-994 PubMedGoogle Scholar
  123. 123.
    Rebacz B, Larsen TO, Clausen MH et al (2007) Identification of griseofulvin as an inhibitor of centrosomal clustering in a phenotype-based screen. Cancer Res 67(13):6342–6350.  https://doi.org/10.1158/0008-5472.CAN-07-0663 PubMedGoogle Scholar
  124. 124.
    Raab MS, Breitkreutz I, Anderhub S et al (2012) GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res 72(20):5374–5385.  https://doi.org/10.1158/0008-5472.CAN-12-2026 PubMedGoogle Scholar
  125. 125.
    Castiel A, Visochek L, Mittelman L, Dantzer F, Izraeli S, Cohen-Armon M (2011) A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer 11:412.  https://doi.org/10.1186/1471-2407-11-412 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Tong WM, Yang YG, Cao WH et al (2007) Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26(26):3857–3867.  https://doi.org/10.1038/sj.onc.1210156 PubMedGoogle Scholar
  127. 127.
    Castiel A, Visochek L, Mittelman L et al (2013) Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells. J Vis Exp (78):e50568.  https://doi.org/10.3791/50568
  128. 128.
    Pannu V, Rida PCG, Celik B et al (2014) Centrosome-declustering drugs mediate a two-pronged attack on interphase and mitosis in supercentrosomal cancer cells. Cell Death Dis 5(11):e1538.  https://doi.org/10.1038/cddis.2014.505 PubMedPubMedCentralGoogle Scholar
  129. 129.
    Watts CA, Richards FM, Bender A et al (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20(11):1399–1410.  https://doi.org/10.1016/j.chembiol.2013.09.012 PubMedPubMedCentralGoogle Scholar
  130. 130.
    Xiao Y-X, Yang W-X (2016) KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 7(30):48656–48670.  https://doi.org/10.18632/oncotarget.8799 PubMedPubMedCentralGoogle Scholar
  131. 131.
    Yang B, Lamb ML, Zhang T et al (2014) Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening. J Med Chem 57(23):9958–9970.  https://doi.org/10.1021/jm501179r PubMedGoogle Scholar
  132. 132.
    Wu J, Mikule K, Wang W et al (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8(10):2201–2208.  https://doi.org/10.1021/cb400186w PubMedGoogle Scholar
  133. 133.
    Mason JM, Lin DCC, Wei X et al (2014) Functional characterization of CFI-400945, a polo-like kinase 4 inhibitor, as a potential anticancer agent. Cancer Cell 26(2):163–176.  https://doi.org/10.1016/j.ccr.2014.05.006 PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Gulbenkian CiênciaOeirasPortugal

Personalised recommendations