Cell Signaling in Cancer

  • João T. BarataEmail author
  • Mariana L. Oliveira
Part of the Learning Materials in Biosciences book series (LMB)


In this chapter we will explain what cell signaling is, how it works, what it serves for and especially why it is important in the context of cancer. The basics about three key signaling pathways, JAK/STAT, MEK/ERK and PI3K/Akt/mTOR, which are frequently involved in all different types of cancer will be adressed. Many other signaling pathways exist, such as Notch, Wnt, Hedgehog, etc., that also partake in tumorigenesis. We will also address what consist the so-called “signaling therapies”, which are their advantages, understand their potential and have some insight into the mechanisms that explain why they frequently fail. We will tackle some of the strategies aiming at overcoming resistance associated with signaling therapies and their possible caveats. Finally, we hope it will be clear the need for a deep characterization of the cancer patient in order to devise the best targeted therapies.


  1. 1.
    Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14:1027–1047PubMedPubMedCentralGoogle Scholar
  2. 2.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137. CrossRefGoogle Scholar
  3. 3.
    Adjei AA, Hidalgo M (2005) Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol 23:5386–5403. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goldstein BJ (1992) Protein-tyrosine phosphatases and the regulation of insulin action. J Cell Biochem 48:33–42. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136:823–837. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. CrossRefPubMedGoogle Scholar
  9. 9.
    Rane SG, Reddy EP (2000) Janus kinases: components of multiple signaling pathways. Oncogene 19:5662–5679. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    O’Shea JJ et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lord JD, McIntosh BC, Greenberg PD, Nelson BH (2000) The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol 164:2533–2541CrossRefGoogle Scholar
  14. 14.
    Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW (1999) Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem 274:2893–2898CrossRefGoogle Scholar
  17. 17.
    Waskiewicz AJ, Flynn A, Proud CG, Cooper JA (1997) Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909–1920. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Davis RJ (1995) Transcriptional regulation by MAP kinases. Mol Reprod Dev 42:459–467. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kerkhoff E, Rapp UR (1998) Cell cycle targets of Ras/Raf signalling. Oncogene 17:1457–1462. CrossRefGoogle Scholar
  21. 21.
    Barata JT, Cardoso AA, Boussiotis VA (2005) Interleukin-7 in T-cell acute lymphoblastic leukemia: an extrinsic factor supporting leukemogenesis? Leuk Lymphoma 46:483–495. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71CrossRefGoogle Scholar
  23. 23.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Shaw RJ, Cantley LCR (2006) PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roskoski R Jr (2004) The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319:1–11. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rowinsky EK (2004) The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors. Annu Rev Med 55:433–457. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Van Cutsem E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Flex E et al (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 205:751–758. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Furqan M, Mukhi N, Lee B, Liu D (2013) Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res 1:5. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Waibel M et al (2013) Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors. Cell Rep 5:1047–1059. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kontro M et al (2014) Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia. Leukemia 28:1738–1742. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Janes MR et al (2010) Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16:205–213. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fan QW et al (2006) A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 9:341–349. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    O’Dwyer ME, Mauro MJ, Druker BJ (2002) Recent advancements in the treatment of chronic myelogenous leukemia. Annu Rev Med 53:369–381. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shah NP et al (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125CrossRefGoogle Scholar
  41. 41.
    Shah NP, Sawyers CL (2003) Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22:7389–7395. CrossRefGoogle Scholar
  42. 42.
    Gorre ME et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880. CrossRefGoogle Scholar
  43. 43.
    Kantarjian H et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270. CrossRefGoogle Scholar
  44. 44.
    Tran KA et al (2016) MEK inhibitors and their potential in the treatment of advanced melanoma: the advantages of combination therapy. Drug Des Devel Ther 10:43–52. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Medicina Molecular João Lobo AntunesFaculdade de Medicina, Universidade de LisboaLisboaPortugal

Personalised recommendations