Advertisement

Case Studies: Molecular Pathology Perspective and Impact on Oncologic Patients’ Management

  • Mireia Castillo-MartinEmail author
  • Joana RibeiroEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

In this chapter you will have a medical perspective of cancer, how it is diagnosed and treated. In particular we focus on the crucial role of pathology assessment for diagnosis/staging and guide patient treatment/management. We will give an historical view of pathology, how it evolved through the centuries from the standard histopathology methods to this new era of molecular analysis. Also, we will generally describe the different treatment options available. Then, through the discussion of three case studies we will illustrate how pathology evaluation (classical and molecular) gives a window to tumor biology, providing a framework for patient treatment and follow-up.

References

  1. 1.
  2. 2.
    Bell KJL, Del Mar C, Wright G, Dickinson J, Glasziou P (2015) Prevalence of incidental prostate cancer: a systematic review of autopsy studies. Int J Cancer 137:1749–1757CrossRefGoogle Scholar
  3. 3.
    Sidiropoulou Z, Vasconcelos AP, Couceiro C, Santos CD, Araujo AV, Alegre I et al (2017) Prevalence of silent breast cancer in autopsy specimens, as studied by the disease being held by image-guided biopsies: the pilot study and literature review. Mol Clin Oncol 7:193–199PubMedPubMedCentralGoogle Scholar
  4. 4.
    F Z, Zanatta A, Thiene G (2014) An etymological “autopsy” of Morgagni’s title: De sedibus et causis morborum per anatomen indagatis (1761). Hum Pathol 45(1):12–16.  https://doi.org/10.1016/j.humpath.2013.04.019 CrossRefGoogle Scholar
  5. 5.
    Titford M (2010) Rudolf Virchow: cellular Pathologist. Lab Med 41(5):311–312CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Guerrera F, Tabbò F, Bessone L, Maletta F, Gaudiano M, Ercole E, Annaratone L, Todaro M, Boita M, Filosso PL, Solidoro P, Delsedime L, Oliaro A, Sapino A, Ruffini E, Inghirami G (2016) The Influence of tissue ischemia time on RNA integrity and patient-derived xenografts (PDX) engraftment rate in a non-small cell lung cancer (NSCLC) biobank. PLoS One 11(1):e0145100CrossRefGoogle Scholar
  8. 8.
    Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Spangenberg J, Zornig C, Juhl HH, David KA (2004) Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. BioTechniques 36(6):1030–1037CrossRefGoogle Scholar
  9. 9.
    Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (2017) AJCC cancer staging manual, 8th edn. Springer: American Joint Commission on Cancer [cited 2016 Dec 28]. Available from: http://www.springer.com/us/book/9783319406176#aboutBook
  10. 10.
    Cordon-Cardo C (2001) Applications of molecular diagnostics: solid tumor genetics can determine clinical treatment protocols. Mod Pathol 14:254–257CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Cordon-Cardo C, Kotsianti A, Verbel DA, Teverovskiy M, Capodieci P, Hamann S, Jeffers Y, Clayton M, Elkhettabi F, Khan FM, Sapir M, Bayer-Zubek V, Vengrenyuk Y, Fogarsi S, Saidi O, Reuter VE, Scher HI, Kattan MW, Bianco FJ, Wheeler TM, Ayala GE, Scardino PT, Donovan MJ (2007) Improved prediction of prostate cancer recurrence through systems pathology. J Clin Invest 117(7):1876–1883CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821CrossRefGoogle Scholar
  15. 15.
    Ahn JW, Coldwell M, Bint S, Mackie Ogilvie C (2015) Array comparative genomic hybridization (array CGH) for detection of genomic copy number variants. J Vis Exp (96):e51718.  https://doi.org/10.3791/51718. https://www.jove.com/video/51718/array-comparative-genomic-hybridization-array-cgh-for-detection
  16. 16.
    JoVE Science Education Database (2018) Genetics. Expression profiling with microarrays. JoVE, Cambridge, MA. https://www.jove.com/science-education/5547/expression-profiling-with-microarrays
  17. 17.
    van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536CrossRefGoogle Scholar
  18. 18.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511CrossRefGoogle Scholar
  19. 19.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefGoogle Scholar
  20. 20.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  21. 21.
    Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A (2013) Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 10(8):472–484CrossRefGoogle Scholar
  22. 22.
    Domínguez-Vigil IG, Moreno-Martínez AK, Wang JY, Roehrl MHA, Barrera-Saldaña HA (2017) The dawn of the liquid biopsy in the fight against cancer. Oncotarget 9(2):2912–2922PubMedPubMedCentralGoogle Scholar
  23. 23.
    Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, Lieberman DB, Morrissette JD, Evans TL, Bauml J, Aggarwal C, Kosteva JA, Alley E, Ciunci C, Cohen RB, Bagley S, Stonehouse-Lee S, Sherry VE, Gilbert E, Langer C, Vachani A, Carpenter EL (2016) Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res 22(23):5772–5782CrossRefGoogle Scholar
  24. 24.
    Wong R, DeCosse J (1990) Cytoreductive surgery. Surg Gynecol Obs 170(3):276–281Google Scholar
  25. 25.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  26. 26.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422CrossRefGoogle Scholar
  27. 27.
    Ryan E, Sheahan K, Creavin B, Mohan HM, Winter DC (2017 Aug) The current value of determining the mismatch repair status of colorectal cancer: a rationale for routine testing. Crit Rev Oncol Hematol 116:38–57CrossRefGoogle Scholar
  28. 28.
    Ryan E, Sheahan K, Creavin B, Mohan HM, Winter DC (2017) The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol 116:38–57CrossRefGoogle Scholar
  29. 29.
    Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18:407–418CrossRefGoogle Scholar
  30. 30.
    Fior R et al (2017) Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts. Proc Natl Acad Sci. 201618389.  https://doi.org/10.1073/pnas.1618389114

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Molecular and Experimental Pathology Laboratory, Champalimaud FoundationLisbonPortugal
  2. 2.Champalimaud Clinical CentreLisbonPortugal

Personalised recommendations