Advertisement

Cancer - when Cells Break the Rules and Hijack Their Own Planet

  • Rita FiorEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

In this Introductory chapter we will revise the major concepts that will be addressed in this book. We look at cancer cells as outlaws, as cells that break the social rules that permit the existence of a healthy multicellular society. Tumor cells not only break their own internal controls (cell-autonomous traits) but are also able to hijack and sabotage the host (non-cell autonomous) to work for them, nurturing and helping them thrive to ultimately metastasize distant territories. We will also go across some basic biology concepts with a developmental and evolutionary perspective to guide you throughout the book.

References

  1. 1.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. Garland Science. New YorkGoogle Scholar
  2. 2.
    Gilbert S (2000) Developmental biology, 6th edn. Sinauer Associates, ed., SunderlandGoogle Scholar
  3. 3.
    Alberts B, Johnson A, Lewis J et al (2009) In: Science G (ed) Molecular biology of the cell, 5th edn. New YorkGoogle Scholar
  4. 4.
    Shendure J, Akey JM (2015) The origins, determinants, and consequences of human mutations. Science 349(6255):1478 LP-1483. Available at: http://science.sciencemag.org/content/349/6255/1478.abstract CrossRefGoogle Scholar
  5. 5.
    Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117(8):2033–2035.  https://doi.org/10.1172/JCI31771 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23 LP–23 28. Available at: http://science.sciencemag.org/content/194/4260/23.abstract CrossRefGoogle Scholar
  7. 7.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW (2013) Cancer genome landscapes. Science. 339(6127):1546–58. Available at: http://science.sciencemag.org/content/339/6127/1546.abstract
  8. 8.
    Almendro V, Marusyk A, Polyak K (2013) Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol Mech Dis 8(1):277–302.  https://doi.org/10.1146/annurev-pathol-020712-163923 CrossRefGoogle Scholar
  9. 9.
    Kreso A, O’Brien CA, van Galen P et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543 LP–543548. Available at: http://science.sciencemag.org/content/339/6119/543.abstract CrossRefGoogle Scholar
  10. 10.
    Bailey AM, Mao Y, Zeng J et al (2014) Implementation of biomarker-driven cancer therapy: existing tools and remaining gaps. Discov Med 17(92):101–114. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160907/ PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kittles RA, Baffoe-Bonnie AB, Moses TY et al (2006) A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet 43(6):507–511.  https://doi.org/10.1136/jmg.2005.035790 CrossRefGoogle Scholar
  12. 12.
    Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7(7):745–754.  https://doi.org/10.1242/dmm.015784 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chen Y, McGee J, Chen X et al (2014) Identification of druggable cancer driver genes amplified across TCGA datasets. Katoh M, ed. PLoS One 9(5):e98293.  https://doi.org/10.1371/journal.pone.0098293 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Conacci-Sorrell M, McFerrin L, Eisenman RN (2014) An overview of MYC and its interactome. Cold Spring Harb Perspect Med 4(1):a014357.  https://doi.org/10.1101/cshperspect.a014357 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mao X, Boyd LK, Yáñez-Muñoz RJ et al (2011) Chromosome rearrangement associated inactivation of tumour suppressor genes in prostate cancer. Am J Cancer Res 1(5):604–617. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3189822/ PubMedPubMedCentralGoogle Scholar
  16. 16.
    Rheinbay E, Parasuraman P, Grimsby J et al (2017) Recurrent and functional regulatory mutations in breast cancer. Nature 547:55. Available at:  https://doi.org/10.1038/nature22992
  17. 17.
    Kent DG, Green AR (2017) Order matters: the order of somatic mutations influences cancer evolution. Cold Spring Harb Perspect Med 7(4):a027060.  https://doi.org/10.1101/cshperspect.a027060 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7(5):349–359.  https://doi.org/10.1038/nrg1840 CrossRefGoogle Scholar
  19. 19.
    Stamos JL, Weis WI (2013) The β-catenin destruction complex. Cold Spring Harb Perspect Biol 5(1):a007898.  https://doi.org/10.1101/cshperspect.a007898 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fior R, Henrique D (2009) “Notch-Off”: a perspective on the termination of Notch signalling. Int J Dev Biol 53(8–10):1379–1384.  https://doi.org/10.1387/ijdb.072309rf CrossRefGoogle Scholar
  21. 21.
    Laiosa CV, Stadtfeld M, Graf T (2006) Determinants of lymphoid-myeloid lineage diversification. Annu Rev Immunol 24(1):705–738.  https://doi.org/10.1146/annurev.immunol.24.021605.090742 CrossRefGoogle Scholar
  22. 22.
    Tosello V, Ferrando AA (2013) The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4(3):199–210.  https://doi.org/10.1177/2040620712471368 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wilson A, Radtke F (2006) Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580(12):2860–2868.  https://doi.org/10.1016/j.febslet.2006.03.024 CrossRefGoogle Scholar
  24. 24.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621.  https://doi.org/10.1016/0014-4827(61)90192-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Hayflick L (1985) The cell biology of aging. Clin Geriatr Med 1:15–27CrossRefGoogle Scholar
  26. 26.
    Magalhaes JP (2011) The biology of ageing: a primer. In: Stuart-Hamilton I (ed) An introduction to gerontology. Cambridge University Press, Cambridge, UK, pp 21–47CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Shay JW, Zou Y, Hiyama E, Wright WE (2001) Telomerase and cancer. Hum Mol Genet 10(7):677–685. Available at:  https://doi.org/10.1093/hmg/10.7.677 CrossRefGoogle Scholar
  29. 29.
    Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet 9(3):403–411. Available at: pmid: 10655550CrossRefGoogle Scholar
  30. 30.
    Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274. Available at:  https://doi.org/10.1038/nrc2622
  31. 31.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292.  https://doi.org/10.1016/j.cell.2011.09.024 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9(4):285–293.  https://doi.org/10.1038/nrc2621 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefGoogle Scholar
  34. 34.
    Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386:761. Available at:  https://doi.org/10.1038/386761a0
  35. 35.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70.  https://doi.org/10.1016/S0092-8674(00)81683-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Champalimaud Centre for the Unknown, Champalimaud FoundationLisbonPortugal

Personalised recommendations