Skip to main content

Bio-Impedance Measurement and Applications

  • Chapter
  • First Online:
Design and Implementation of Portable Impedance Analyzers

Abstract

In this chapter, a revision of the basic principles of bio-impedance and its different measurement techniques is presented. Also, different portable impedance analyzer designs from the literature and the market are discussed. Finally, some of the main bio-impedance applications are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Barsoukov, J. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  2. L. Callegaro, The metrology of electrical impedance at high frequency: a review. Meas. Sci. Technol. 20, 022002 (2008)

    Article  Google Scholar 

  3. D. Tsunami, J. McNames, A. Colbert, S. Pearson, R. Hammerschlag, Variable frequency bioimpedance instrumentation, in Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE, vol. 1 (IEEE, Piscataway, 2004), pp. 2386–2389

    Google Scholar 

  4. M.E. Valentinuzzi, J.P. Morucci, C.J. Felice, Bioelectrical impedance techniques in medicine. Crit. Rev. Biomed. Eng. 24(4–6), 353–466 (1996)

    Article  Google Scholar 

  5. A. Väinölä, T. Repo, Impedance spectroscopy in frost hardiness evaluation of rhododendron leaves. Ann. Bot. 86, 799–805 (2000)

    Article  Google Scholar 

  6. T. Repo, G. Zhang, A. Ryyppö, R. Rikala, The electrical impedance spectroscopy of scot pine (Pinus sylvestris l.) shoots in relation to cold acclimation. J. Exp. Bot. 51(353), 2095–2107 (2000)

    Article  Google Scholar 

  7. H. Fukuma, K. Tanaka, I. Yamaura, Measurement of impedance of columnar botanical tissue using the multielectrode method. Electron. Commun. Jpn. 84(2), 1–11 (2001)

    Article  Google Scholar 

  8. O.G. Martinsen, S. Grimnes, Bioimpedance and Bioelectricity Basics (Academic Press, Cambridge, 2008)

    Google Scholar 

  9. V. Muralidharan, Warburg impedance–basics revisited. Anti-Corros. Methods Mater. 44, 26–29 (1997)

    Article  Google Scholar 

  10. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics i. alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  Google Scholar 

  11. A. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10, 40–50 (2010)

    Article  Google Scholar 

  12. W. Glockle, T. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, 46–53 (1995)

    Article  Google Scholar 

  13. I.S. Jesus, J.T. Machado, J.B. Cunha, Fractional electrical impedances in botanical elements. J. Vib. Control 14, 1389–1402 (2008)

    Article  Google Scholar 

  14. A. Bondarenko, G. Ragoisha, Inverse Problem in Potentiodynamic Electrochemical Impedance (Nova Science Publishers, New York, 2005)

    Google Scholar 

  15. M. Grossi, B. Riccò, Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sens. Sens. Syst. 6, 303 (2017)

    Article  Google Scholar 

  16. B. Sanchez, R. Bragos, G. Vandersteen, Influence of the multisine excitation amplitude design for biomedical applications using impedance spectroscopy, in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (IEEE, Piscataway, 2011), pp. 3975–3978

    Google Scholar 

  17. U. Newton 4th LTD, LCR Active Head and Impedance Analysis Interface

    Google Scholar 

  18. I. Data, Electrochemical impedance spectroscopy using the Bas-Zahner IM6 and im6e impedance analyzers. Curr. Sep. 17, 54 (1998)

    Google Scholar 

  19. PalmSens, (2018). https://www.palmsens.com/product/palmsens4/

  20. D. Jamaludin, S.A. Aziz, D. Ahmad, H.Z. Jaafar, Impedance analysis of Labisia pumila plant water status. Inf. Process. Agric. 2, 161–168 (2015)

    Google Scholar 

  21. E.J. Rose, D. Pamela, K. Rajasekaran, Apple vitality detection by impedance measurement. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 9, 144–148 (2013)

    Google Scholar 

  22. F. Seone, I. Mochino-Herranz, J. Ferreira, L. Alvarez, R. Buendia, D. Ayllon, C. Llerena, R. Gil-Pita, Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 14, 7120–7141 (2014)

    Article  Google Scholar 

  23. Y.-H. Kim, J.-S. Park, H.-I. Jung, An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sens. Actuators B 138, 270–277 (2009)

    Article  Google Scholar 

  24. A. Devices, 1 MSPS, 12-Bit Impedance Converter, Network Analyzer AD5933 Datasheet. Rev. E. (2013)

    Google Scholar 

  25. T. Instruments, AFE4300 Low-Cost, Integrated Analog Front-End for Weight-Scale and Body Composition Measurement. Rev. C. (2017)

    Google Scholar 

  26. C.J. Chen, J.T. Liu, S.-J. Chang, M.-W. Lee, J.-Z. Tsai, Development of a portable impedance detection system for monitoring the growth of mouse L929 cells. J. Taiwan Inst. Chem. Eng. 43, 678–684 (2012)

    Article  Google Scholar 

  27. T. Schwarzenberger, P. Wolf, M. Brischwein, R. Kleinhans, F. Demmel, A. Lechner, B. Becker, B. Wolf, Impedance sensor technology for cell-based assays in the framework of a high-content screening system. Physiol. Meas. 32, 977–993 (2011)

    Article  Google Scholar 

  28. M.-H. Wang, M.-F. Kao, L.-S. Jang, Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device. Rev. Sci. Instrum. 82, 064302 (2011)

    Article  Google Scholar 

  29. J. Broeders, S. Duchateau, B. Van Grinsven, W. Vanaken, M. Peeters, T. Cleij, R. Thoelen, P. Wagner, W. De Ceuninck, Miniaturised eight-channel impedance spectroscopy unit as sensor platform for biosensor applications. Phys. Status Solidi A 208, 1357–1363 (2011)

    Article  Google Scholar 

  30. P. Bogonez-Franco, A. Bayes-Genis, J. Rosell, R. Bragos, Performance of an implantable impedance spectroscopy monitor using ZigBee. J. Phys. Conf. Ser. 224, 012163 (2010)

    Article  Google Scholar 

  31. J. Ferreira, F. Seoane, A. Ansede, R. Bragos, Ad5933-based spectrometer for electrical bioimpedance applications. J. Phys. Conf. Ser. 224, 012011 (2010)

    Article  Google Scholar 

  32. C. Margo, J. Katrib, M. Nadi, A. Rouane, A four-electrode low frequency impedance spectroscopy measurement system using the ad5933 measurement chip. Physiol. Meas. 34, 391–405 (2013)

    Article  Google Scholar 

  33. A. Melwin, K. Rajasekaran, Implementation of bioimpedance instrument kit in ARM7. Int. J. Adv. Res. Comput. Sci. 34, 391–405 (2013)

    Google Scholar 

  34. G. Lentka, J. Hoja, Interface circuit for impedance sensors using two specialized single-chip microsystems. Sens. Actuators A 163, 191–197 (2010)

    Article  Google Scholar 

  35. J. Hoja, G. Lentka, A family of new generation miniaturized impedance analyzers for technical object diagnostics. Metrol. Meas. Syst. 20, 43–52 (2013)

    Article  Google Scholar 

  36. K. Chabowski, T. Piasecki, A. Dzierka, K. Nitsch, Simple wide frequency range impedance meter based on AD5933 integrated circuit. Metrol. Meas. Syst. 22, 13–24 (2015)

    Article  Google Scholar 

  37. A.A. Al-Ali, A.S. Elwakil, A. Ahmad, B.J. Maundy, Design of a portable low-cost impedance analyzer, in 10th Joint International Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) and Biomedical Electronics and Devices (BIODEVICES-2017), vol. 1 (SciTePress, Setbal, 2017), pp. 104–109

    Google Scholar 

  38. S. Weyer, T. Menden, L. Leicht, S. Leonhardt, T. Wartzek, Development of a wearable multi-frequency impedance cardiography device. J. Med. Eng. Technol. 39(2), 131–137 (2015)

    Article  Google Scholar 

  39. B. Sanchez, A. Praveen, E. Bartolome, K. Soundarapandian, R. Bragos, Minimal implementation of an afe4300-based spectrometer for electrical impedance spectroscopy measurements, in Journal of Physics: Conference Series, vol. 434 (IOP Publishing, Bristol, 2013), p. 012014

    Google Scholar 

  40. R. Kusche, S. Kaufmann, M. Ryschka, Design, development and comparison of two different measurement devices for time-resolved determination of phase shifts of bioimpedances, in Proceedings of the Third Student Conference on Medical Engineering Science, pp. 115–119 (2014)

    Google Scholar 

  41. T. Radil, P.M. Ramos, A.C. Serra, DSP based portable impedance measurement instrument using sine-fitting algorithms, in 2005 IEEE Instrumentation and Measurement Technology Conference Proceedings, vol. 2 (IEEE, Piscataway, 2005), pp. 1018–1022

    Google Scholar 

  42. T. Radil, P.M. Ramos, A.C. Serra, Impedance measurement with sine-fitting algorithms implemented in a DSP portable device. IEEE Trans. Instrum. Meas. 57, 197–204 (2008)

    Article  Google Scholar 

  43. P.M. Ramos, F.M. Janeiro, Implementation of DSP based algorithms for impedance measurements, in IEEE International Conference Signal Processing and Communications, ICSPC2007 (IEEE, Piscataway, 2007), pp. 816–819

    Google Scholar 

  44. P.M. Ramos, F.M. Janeiro, T. Radil, Comparison of impedance measurements in a DSP using ellipse-fit and seven-parameter sine-fit algorithms. Measurement 42(9), 1370–1379 (2009)

    Article  Google Scholar 

  45. T. Piasecki, K. Chabowski, K. Nitsch, Design, calibration and tests of versatile low frequency impedance analyser based on ARM microcontroller. Measurement 91, 55–161 (2016)

    Article  Google Scholar 

  46. A. Choi, J.Y. Kim, S. Jo, J.H. Jee, S.B. Heymsfield, Y.A. Bhagat, I. Kim, J. Cho, Smartphone-based bioelectrical impedance analysis devices for daily obesity management. Sensors 15(9), 22151–22166 (2015)

    Article  Google Scholar 

  47. V. Valente, A. Demosthenous, Wideband fully-programmable dual-mode CMOS analogue front-end for electrical impedance spectroscopy. Sensors 6, 1159–1179 (2016)

    Article  Google Scholar 

  48. T. Chen, W. Wu, C. Wei, R.B. Darling, B. Liu, Novel 10-bit impedance-to-digital converter for electrochemical impedance spectroscopy measurements. IEEE Trans. Biomed. Circuits Syst. 11, 370–379 (2017)

    Article  Google Scholar 

  49. D. Allegri, A. Donida, P. Malcovati, D. Barrettino, CMOS-Based Multifrequency Impedance Analyzer for Biomedical Applications, in IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 6, pp. 1301–1312, 2018. https://doi.org/10.1109/TBCAS.2018.2867172

    Article  Google Scholar 

  50. D. Allegri, A. Donida, P. Malcovati, D. Barrettino, CMOS-based multifrequency impedance analyzer for biomedical applications, in 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2018), pp. 1–5

    Book  Google Scholar 

  51. S. Wang, Z. Zhao, C. You, 0.18 μm CMOS integrated circuit design for impedance-based structural health monitoring. IET Circuits Devices Syst. 4(3), 227–238 (2010)

    Article  Google Scholar 

  52. S.-H. Bae, B.-S. Moon, W.-J. Lee, S.-I. Lim, A chip design for body composition analyzer, in 2006 IEEE Biomedical Circuits and Systems Conference (IEEE, Piscataway, 2006), pp. 218–221

    Google Scholar 

  53. D. Bianchi, G. Ferrari, A. Rottigni, M. Sampietro, CMOS impedance analyzer for nanosamples investigation operating up to 150 MHz with sub-aF resolution. IEEE J. Solid-State Circuits 49, 2748–2757 (2014)

    Article  Google Scholar 

  54. C. T.-S. Ching, W.-Y. Chih, Design and evaluation of an affordable and programmable mobile device, capable of delivering constant current and high voltage electric pulses of different waveforms for biomedical and clinical applications. Sensors Actuators B Chem. 194, 361–370 (2014)

    Article  Google Scholar 

  55. C.T.-S. Ching, T.-P. Sun, W.-T. Huang, S.-H. Huang, C.-S. Hsiao, K.-M. Chang, A circuit design of a low-cost, portable and programmable electroporation device for biomedical applications. Sensors Actuators B Chem. 166, 292–300 (2012)

    Article  Google Scholar 

  56. A. Elwakil, B. Maundy, Experimental technique for estimating the dispersion coefficient of a constant phase element, in 2011 20th European Conference on Circuit Theory and Design, ECCTD 2011 (IEEE, Piscataway, 2011), pp. 469–471

    Google Scholar 

  57. T.J. Freeborn, B. Maundy, A.S. Elwakil, Numerical extraction of Cole-Cole impedance parameters from step response. IEICE Nonlinear Theor Appl. NOLTA 2(4), 548–561 (2011)

    Article  Google Scholar 

  58. T. Freeborn, B. Maundy, A. Elwakil, Least squares estimation technique of Cole-Cole parameters from step response. Electron. Lett. 48, 752–754 (2012)

    Article  Google Scholar 

  59. B. Maundy, A. Elwakil, A. Allagui, Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 119, 153–157 (2015)

    Article  Google Scholar 

  60. T.J. Freeborn, B. Maundy, A.S. Elwakil, Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. Med. Biol. Eng. Comput. 52, 749–758 (2014)

    Article  Google Scholar 

  61. C. Vastarouchas, C. Psychalinos, A. Elwakil, A. Al-Ali, Novel two-measurements-only cole-cole bio-impedance parameters extraction technique. Measurement 131, 394 – 399 (2019)

    Article  Google Scholar 

  62. M. Anas, N. Nurun, A. Norali, M. Normahira, Non-invasive blood glucose measurement, in 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES) (IEEE, Piscataway, 2012), pp. 503–507

    Book  Google Scholar 

  63. D. Kamat, D. Bagul, P. Patil, Blood glucose measurement using bioimpedance technique. Adv. Electron. 2014, 406257 (2014)

    Article  Google Scholar 

  64. P. Aberg, I. Nicander, J. Hansson, P. Geladi, U. Holmgren, S. Ollmar, Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans. Biomed. Eng. 51, 2097–2102 (2004)

    Article  Google Scholar 

  65. T. Anh-Nguyen, B. Tiberius, U. Pliquett, G.A. Urban, An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sensors Actuators A Phys. 241, 231–237 (2016)

    Article  Google Scholar 

  66. A.A. Bakr, A.G. Radwan, A.H. Madian, A.S. Elwakil, Aging effect on apples bio-impedance using AD5933, in 2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (IEEE, Piscataway, 2016), pp. 158–161

    Google Scholar 

  67. J.R. González-Araiza, M.C. Ortiz-Sánchez, F.M. Vargas-Luna, J.M. Cabrera-Sixto, Application of electrical bio-impedance for the evaluation of strawberry ripeness. Int. J. Food Prop. 20, 1044–1050 (2016)

    Article  Google Scholar 

  68. E. Borges, A. Matos, J. Cardoso, C. Correia, T. Vasconcelos, N. Gomes, Early detection and monitoring of plant diseases by bioelectric impedance spectroscopy, in 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG) (IEEE, Piscataway, 2012), pp. 1–4

    Book  Google Scholar 

  69. H. Lizhi, K. Toyoda, I. Ihara, Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J. Food Eng. 88, 151–158 (2008)

    Article  Google Scholar 

  70. F.R. Harker, J.H. Maindonald, Ripening of nectarine fruit (changes in the cell wall, vacuole, and membranes detected using electrical impedance measurements). Plant Physiol. 106, 165–171 (1994)

    Article  Google Scholar 

  71. K. Toyoda, Impedance spectroscopic analysis in agricultural products, in Developments in Food Engineering (Springer, Boston, 1994), pp. 143–145

    Google Scholar 

  72. X. Zhao, H. Zhuang, S.-C. Yoon, Y. Dong, W. Wang, W. Zhao, Electrical impedance spectroscopy for quality assessment of meat and fish: a review on basic principles, measurement methods, and recent advances. J. Food Qual. 2017(2), 1–16 (2017)

    Google Scholar 

  73. A.M. Lopes, J.T. Machado, E. Ramalho, On the fractional-order modeling of wine. Eur. Food Res. Technol. 243, 921–929 (2017)

    Article  Google Scholar 

  74. A.M. Lopes, J.T. Machado, E. Ramalho, V. Silva, Milk characterization using electrical impedance spectroscopy and fractional models. Food Anal. Methods 11(3), 901–912 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Ali, A.A., Maundy, B.J., Elwakil, A.S. (2019). Bio-Impedance Measurement and Applications. In: Design and Implementation of Portable Impedance Analyzers. Springer, Cham. https://doi.org/10.1007/978-3-030-11784-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11784-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11783-2

  • Online ISBN: 978-3-030-11784-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics