Skip to main content

Novel Therapies in Paediatric NHL

  • Chapter
  • First Online:
Non-Hodgkin's Lymphoma in Childhood and Adolescence

Abstract

Even though current treatment for paediatric NHL results in excellent outcomes for most children, the burden of therapy and associated morbidities are still significant. In addition, patients with relapsed or refractory disease still have a dismal prognosis with less than 30% of patients achieving a long-term cure. Further intensification of chemotherapy is unlikely to increase cure rates. Novel and targeted therapies that are effective in curing relapsed patients and potentially reduce toxicities in newly diagnosed patients whilst preserving their excellent outcomes are needed. Numerous novel agents approved or in clinical trials for adult NHL are of potential interest for paediatric NHL and will be discussed in this chapter. In addition, the current status of immunotherapy with a focus on chimeric antigen receptor (CAR) and tumour-associated antigen (TAA) T-cells will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cairo MS, Gerrard M, Sposto R, Auperin A, Pinkerton CR, Michon J, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109(7):2736–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gerrard M, Cairo MS, Weston C, Auperin A, Pinkerton R, Lambilliote A, et al. Excellent survival following two courses of COPAD chemotherapy in children and adolescents with resected localized B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Br J Haematol. 2008;141(6):840–7.

    Article  CAS  PubMed  Google Scholar 

  3. Minard-Colin V, Auperin A, Pillon M, Burke A, Anderson JR, Barkauskas DA, et al. Results of the randomized Intergroup trial Inter-B-NHL Ritux 2010 for children and adolescents with high-risk B-cell non-Hodgkin lymphoma (B-NHL) and mature acute leukemia (B-AL): Evaluation of rituximab (R) efficacy in addition to standard LMB chemotherapy (CT) regimen. J Clin Oncol. 2016;34(15_suppl):10507.

    Article  Google Scholar 

  4. Patte C, Auperin A, Gerrard M, Michon J, Pinkerton R, Sposto R, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109(7):2773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt B, Oschlies I, et al. The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood. 2005;105(3):948–58.

    Article  CAS  PubMed  Google Scholar 

  6. Anoop P, Sankpal S, Stiller C, Tewari S, Lancaster DL, Khabra K, et al. Outcome of childhood relapsed or refractory mature B-cell non-Hodgkin lymphoma and acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1882–8.

    Article  CAS  PubMed  Google Scholar 

  7. Jourdain A, Auperin A, Minard-Colin V, Aladjidi N, Zsiros J, Coze C, et al. Outcome of and prognostic factors for relapse in children and adolescents with mature B-cell lymphoma and leukemia treated in three consecutive prospective “Lymphomes Malins B” protocols. A Societe Francaise des Cancers de l’Enfant study. Haematologica. 2015;100(6):810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dunsmore KP, Winter S, Devidas M, Wood BL, Esiashvili N, Eisenberg N, Briegel N, Hayashi RJ, Gastier-Foster JM, Carroll AJ, Heerema NA, Asselin B, Rabin KR, Zweidler-McKay P, Raetz EA, Loh ML, Winick NJ, Carroll WL, Hunger S. COG AALL0434: A randomized trial testing nelarabine in newly diagnosed T-cell malignancy. J Clin Oncol. 2018;36(15_Supplement):10500.

    Article  Google Scholar 

  9. Termuhlen AM, Smith LM, Perkins SL, Lones M, Finlay JL, Weinstein H, et al. Disseminated lymphoblastic lymphoma in children and adolescents: results of the COG A5971 trial: a report from the Children’s Oncology Group. Br J Haematol. 2013;162(6):792–801.

    Article  CAS  PubMed  Google Scholar 

  10. Landmann E, Burkhardt B, Zimmermann M, Meyer U, Woessmann W, Klapper W, et al. Results and conclusions of the European Intergroup EURO-LB02 trial in children and adolescents with lymphoblastic lymphoma. Haematologica. 2017;102(12):2086–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mondelaers V, Suciu S, De Moerloose B, Ferster A, Mazingue F, Plat G, et al. Prolonged versus standard native E. coli asparaginase therapy in childhood acute lymphoblastic leukemia and non-Hodgkin lymphoma: final results of the EORTC-CLG randomized phase III trial 58951. Haematologica. 2017;102(10):1727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burkhardt B, Mueller S, Khanam T, Perkins SL. Current status and future directions of T-lymphoblastic lymphoma in children and adolescents. Br J Haematol. 2016;173(4):545–59.

    Article  PubMed  Google Scholar 

  13. Atra A, Gerrard M, Hobson R, Imeson JD, Hann IM, Pinkerton CR. Outcome of relapsed or refractory childhood B-cell acute lymphoblastic leukaemia and B-cell non-Hodgkin’s lymphoma treated with the UKCCSG 9003/9002 protocols. Br J Haematol. 2001;112(4):965–8.

    Article  CAS  PubMed  Google Scholar 

  14. Turner SD, Lamant L, Kenner L, Brugieres L. Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol. 2016;173(4):560–72.

    Article  PubMed  Google Scholar 

  15. Stein H, Foss HD, Durkop H, Marafioti T, Delsol G, Pulford K, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–95.

    CAS  PubMed  Google Scholar 

  16. Fraser C, Brown P, Megason G, Ahn HS, Cho B, Kirov I, et al. Open-label bendamustine monotherapy for pediatric patients with relapsed or refractory acute leukemia: efficacy and tolerability. J Pediatr Hematol Oncol. 2014;36(4):e212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeha S, Metzger ML, Crews KR, Campbell P, Ribeiro RC, Cheng C, et al. A phase I trial of bendamustine in combination with clofarabine and etoposide in pediatric patients with relapsed or refractory hematologic malignancies. Blood. 2016;128(22):1628.

    Google Scholar 

  18. Berg SL, Cairo MS, Russell H, Ayello J, Ingle AM, Lau H, et al. Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a children’s oncology group phase I consortium report. J Clin Oncol. 2011;29(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  19. Horton TM, Gannavarapu A, Blaney SM, D’Argenio DZ, Plon SE, Berg SL. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol. 2006;58(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  20. Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008;50(1):37–45.

    Article  PubMed  Google Scholar 

  21. Messinger YH, Gaynon PS, Sposto R, van der Giessen J, Eckroth E, Malvar J, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90.

    Article  CAS  PubMed  Google Scholar 

  22. Lee S, Yin C, Ayello J, Morris E, O’Connell T, Harrison L, et al. Ibrutinib significantly prolonged survival in a human Burkitt Lymphoma (BL) Xenograft NSG mouse model: ibrutinib may be a potential adjuvant agent in the treatment of BL. Blood. 2015;126(23):5117.

    Google Scholar 

  23. Bhatti M, Ippolito T, Mavis C, Gu J, Cairo MS, Lim MS, et al. Pre-clinical activity of targeting the PI3K/Akt/mTOR pathway in Burkitt lymphoma. Oncotarget. 2018;9(31):21820–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  25. Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, et al. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016;22(6):1364–70.

    Article  CAS  PubMed  Google Scholar 

  26. DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother. 2005;54(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  27. Bhojwani D, Sposto R, Shah N, Rodriguez V, O’Brien MM, McNeer JL, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia (R/R ALL). J Clin Oncol. 2017;35(15_suppl):10512.

    Article  Google Scholar 

  28. Shewach DS, Daddona PE, Ashcraft E, Mitchell BS. Metabolism and selective cytotoxicity of 9-beta-D-arabinofuranosylguanine in human lymphoblasts. Cancer Res. 1985;45(3):1008–14.

    CAS  PubMed  Google Scholar 

  29. Winter SS, Dunsmore KP, Devidas M, Eisenberg N, Asselin BL, Wood BL, et al. Safe integration of nelarabine into intensive chemotherapy in newly diagnosed T-cell acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0434. Pediatr Blood Cancer. 2015;62(7):1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Houghton PJ, Morton CL, Gorlick R, Lock RB, Carol H, Reynolds CP, et al. Stage 2 combination testing of rapamycin with cytotoxic agents by the pediatric preclinical testing program. Mol Cancer Ther. 2010;9(1):101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Place AE, Pikman Y, Stevenson KE, Harris MH, Pauly M, Sulis ML, et al. Phase I trial of the mTOR inhibitor everolimus in combination with multi-agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(7):e27062.

    Article  CAS  PubMed  Google Scholar 

  32. Kalac M, Scotto L, Marchi E, Amengual J, Seshan VE, Bhagat G, et al. HDAC inhibitors and decitabine are highly synergistic and associated with unique gene-expression and epigenetic profiles in models of DLBCL. Blood. 2011;118(20):5506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogura M, Ando K, Suzuki T, Ishizawa K, Oh SY, Itoh K, et al. A multicentre phase II study of vorinostat in patients with relapsed or refractory indolent B-cell non-Hodgkin lymphoma and mantle cell lymphoma. Br J Haematol. 2014;165(6):768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Straus DJ, Hamlin PA, Matasar MJ, Lia Palomba M, Drullinsky PR, Zelenetz AD, et al. Phase I/II trial of vorinostat with rituximab, cyclophosphamide, etoposide and prednisone as palliative treatment for elderly patients with relapsed or refractory diffuse large B-cell lymphoma not eligible for autologous stem cell transplantation. Br J Haematol. 2015;168(5):663–70.

    Article  CAS  PubMed  Google Scholar 

  35. Nieto Y, Valdez BC, Thall PF, Ahmed S, Jones RB, Hosing C, et al. Vorinostat combined with high-dose gemcitabine, busulfan, and melphalan with autologous stem cell transplantation in patients with refractory lymphomas. Biol Blood Marrow Transplant. 2015;21(11):1914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492(7427):108–12.

    Article  CAS  PubMed  Google Scholar 

  37. Italiano A, Soria JC, Toulmonde M, Michot JM, Lucchesi C, Varga A, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.

    Article  CAS  PubMed  Google Scholar 

  38. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38.

    CAS  PubMed  Google Scholar 

  39. Tate SC, Cai S, Ajamie RT, Burke T, Beckmann RP, Chan EM, et al. Semi-mechanistic pharmacokinetic/pharmacodynamic modeling of the antitumor activity of LY2835219, a new cyclin-dependent kinase 4/6 inhibitor, in mice bearing human tumor xenografts. Clin Cancer Res. 2014;20(14):3763–74.

    Article  CAS  PubMed  Google Scholar 

  40. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov. 2016;6(4):353–67.

    Article  CAS  PubMed  Google Scholar 

  41. Wang M, Rule S, Zinzani PL, Goy A, Casasnovas O, Smith SD, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet. 2018;391(10121):659–67.

    Article  CAS  PubMed  Google Scholar 

  42. Lee S, Shah T, Yin C, Hochberg J, Ayello J, Morris E, et al. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model. Oncotarget. 2018;9(11):9776–88.

    PubMed  PubMed Central  Google Scholar 

  43. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31:2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Loh ML, Tasian SK, Rabin KR, Brown P, Magoon D, Reid JM, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: A Children’s Oncology Group phase 1 consortium study (ADVL1011). Pediatr Blood Cancer. 2015;62(10):1717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bride KL, Vincent TL, Im SY, Aplenc R, Barrett DM, Carroll WL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mosse YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. The lancet oncology. 2013;14(6):472–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  48. Cole PD, McCarten KM, Pei Q, Spira M, Metzger ML, Drachtman RA, et al. Brentuximab vedotin with gemcitabine for paediatric and young adult patients with relapsed or refractory Hodgkin’s lymphoma (AHOD1221): a Children’s Oncology Group, multicentre single-arm, phase 1–2 trial. Lancet Oncol. 2018;19(9):1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hochberg J, Harrison L, Morris E, Militano O, Brand P, Fabricatore S, et al. Safety of liposomal cytarabine CNS prophylaxis in children, adolescent and young adult hematopoietic stem cell transplant recipients with acute leukemia and non-Hodgkin lymphoma. Bone Marrow Transplant. 2016;51(9):1249–52.

    Article  CAS  PubMed  Google Scholar 

  50. Rummel MJ, Al-Batran SE, Kim SZ, Welslau M, Hecker R, Kofahl-Krause D, et al. Bendamustine plus rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and low-grade non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(15):3383–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ogura M, Ishizawa K, Maruyama D, Uike N, Ando K, Izutsu K, et al. Bendamustine plus rituximab for previously untreated patients with indolent B-cell non-Hodgkin lymphoma or mantle cell lymphoma: a multicenter phase II clinical trial in Japan. Int J Hematol. 2017;105(4):470–7.

    Article  CAS  PubMed  Google Scholar 

  52. Flinn IW, van der Jagt R, Kahl BS, Wood P, Hawkins TE, Macdonald D, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. 2014;123(19):2944–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vacirca JL, Acs PI, Tabbara IA, Rosen PJ, Lee P, Lynam E. Bendamustine combined with rituximab for patients with relapsed or refractory diffuse large B cell lymphoma. Ann Hematol. 2014;93(3):403–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ohmachi K, Niitsu N, Uchida T, Kim SJ, Ando K, Takahashi N, et al. Multicenter phase II study of bendamustine plus rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2013;31(17):2103–9.

    Article  CAS  PubMed  Google Scholar 

  55. Park SI, Grover NS, Olajide O, Asch AS, Wall JG, Richards KL, et al. A phase II trial of bendamustine in combination with rituximab in older patients with previously untreated diffuse large B-cell lymphoma. Br J Haematol. 2016;175(2):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leonard JP, Jung SH, Johnson J, Pitcher BN, Bartlett NL, Blum KA, et al. Randomized trial of lenalidomide alone versus lenalidomide plus rituximab in patients with recurrent follicular lymphoma: CALGB 50401 (alliance). J Clin Oncol. 2015;33(31):3635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin P, Jung SH, Pitcher B, Bartlett NL, Blum KA, Shea T, et al. A phase II trial of lenalidomide plus rituximab in previously untreated follicular non-Hodgkin’s lymphoma (NHL): CALGB 50803 (Alliance). Ann Oncol. 2017;28(11):2806–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiernik PH, Lossos IS, Tuscano JM, Justice G, Vose JM, Cole CE, et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(30):4952–7.

    Article  PubMed  Google Scholar 

  59. Witzig TE, Vose JM, Zinzani PL, Reeder CB, Buckstein R, Polikoff JA, et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin’s lymphoma. Ann Oncol. 2011;22(7):1622–7.

    Article  CAS  PubMed  Google Scholar 

  60. Czuczman MS, Trneny M, Davies A, Rule S, Linton KM, Wagner-Johnston N, et al. A phase 2/3 multicenter, randomized, open-label study to compare the efficacy and safety of lenalidomide versus investigator’s choice in patients with relapsed or refractory diffuse large B-cell lymphoma. Clin Cancer Res. 2017;23(15):4127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nowakowski GS, LaPlant B, Macon WR, Reeder CB, Foran JM, Nelson GD, et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. J Clin Oncol. 2015;33(3):251–7.

    Article  CAS  PubMed  Google Scholar 

  62. Nowakowski GS, Chiappella A, Witzig TE, Spina M, Gascoyne RD, Zhang L, et al. ROBUST: lenalidomide-R-CHOP versus placebo-R-CHOP in previously untreated ABC-type diffuse large B-cell lymphoma. Future Oncol. 2016;12(13):1553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khouri IF, Fernandez Curbelo I, Turturro F, Jabbour EJ, Milton DR, Bassett RL Jr, et al. Ipilimumab plus lenalidomide after allogeneic and autologous stem cell transplantation for patients with lymphoid malignancies. Clin Cancer Res. 2018;24(5):1011–8.

    Article  CAS  PubMed  Google Scholar 

  64. Smith SM, Pitcher BN, Jung SH, Bartlett NL, Wagner-Johnston N, Park SI, et al. Safety and tolerability of idelalisib, lenalidomide, and rituximab in relapsed and refractory lymphoma: the alliance for clinical trials in oncology A051201 and A051202 phase 1 trials. Lancet Haematol. 2017;4(4):e176–e82.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fowler N, Kahl BS, Lee P, Matous JV, Cashen AF, Jacobs SA, et al. Bortezomib, bendamustine, and rituximab in patients with relapsed or refractory follicular lymphoma: the phase II VERTICAL study. J Clin Oncol. 2011;29(25):3389–95.

    Article  CAS  PubMed  Google Scholar 

  66. Ribrag V, Tilly H, Casasnovas O, Bosly A, Bouabdallah R, Delarue R, et al. Efficacy and toxicity of two schedules of bortezomib in patients with recurrent or refractory follicular lymphoma: a randomised phase II trial from the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Eur J Cancer. 2013;49(4):904–10.

    Article  CAS  PubMed  Google Scholar 

  67. Goy A, Younes A, McLaughlin P, Pro B, Romaguera JE, Hagemeister F, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23(4):667–75.

    Article  CAS  PubMed  Google Scholar 

  68. Coiffier B, Osmanov EA, Hong X, Scheliga A, Mayer J, Offner F, et al. Bortezomib plus rituximab versus rituximab alone in patients with relapsed, rituximab-naive or rituximab-sensitive, follicular lymphoma: a randomised phase 3 trial. Lancet Oncol. 2011;12(8):773–84.

    Article  CAS  PubMed  Google Scholar 

  69. Zinzani PL, Khuageva NK, Wang H, Garicochea B, Walewski J, Van Hoof A, et al. Bortezomib plus rituximab versus rituximab in patients with high-risk, relapsed, rituximab-naive or rituximab-sensitive follicular lymphoma: subgroup analysis of a randomized phase 3 trial. J Hematol Oncol. 2012;5:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sehn LH, MacDonald D, Rubin S, Cantin G, Rubinger M, Lemieux B, et al. Bortezomib ADDED to R-CVP is safe and effective for previously untreated advanced-stage follicular lymphoma: a phase II study by the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2011;29(25):3396–401.

    Article  CAS  PubMed  Google Scholar 

  71. Evens AM, Rosen ST, Helenowski I, Kline J, Larsen A, Colvin J, et al. A phase I/II trial of bortezomib combined concurrently with gemcitabine for relapsed or refractory DLBCL and peripheral T-cell lymphomas. Br J Haematol. 2013;163(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  72. Leonard JP, Kolibaba KS, Reeves JA, Tulpule A, Flinn IW, Kolevska T, et al. Randomized phase II study of R-CHOP with or without bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3538–46.

    Article  CAS  PubMed  Google Scholar 

  73. Offner F, Samoilova O, Osmanov E, Eom HS, Topp MS, Raposo J, et al. Frontline rituximab, cyclophosphamide, doxorubicin, and prednisone with bortezomib (VR-CAP) or vincristine (R-CHOP) for non-GCB DLBCL. Blood. 2015;126(16):1893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim SJ, Yoon DH, Kang HJ, Kim JS, Park SK, Kim HJ, et al. Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial. Eur J Cancer. 2012;48(17):3223–31.

    Article  CAS  PubMed  Google Scholar 

  75. Blaney SM, Bernstein M, Neville K, Ginsberg J, Kitchen B, Horton T, et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol. 2004;22(23):4804–9.

    Article  CAS  PubMed  Google Scholar 

  76. Muscal JA, Thompson PA, Horton TM, Ingle AM, Ahern CH, McGovern RM, et al. A phase I trial of vorinostat and bortezomib in children with refractory or recurrent solid tumors: a Children’s Oncology Group phase I consortium study (ADVL0916). Pediatr Blood Cancer. 2013;60(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  77. Scarfo I, Ormhoj M, Frigault MJ, Castano AP, Lorrey S, Bouffard AA, et al. Anti-CD37 chimeric antigen receptor T cells are active against B and T cell lymphomas. Blood. 2018;132(23):2527.

    Google Scholar 

  78. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003;101(6):2377–80.

    Article  CAS  PubMed  Google Scholar 

  79. Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C, et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res. 2003;9(3):1136–44.

    CAS  PubMed  Google Scholar 

  80. Zheng B, Zhou R, Gong Y, Yang X, Shan Q. Proteasome inhibitor bortezomib overcomes P-gp-mediated multidrug resistance in resistant leukemic cell lines. Int J Lab Hematol. 2012;34(3):237–47.

    Article  CAS  PubMed  Google Scholar 

  81. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5(4):412–7.

    Article  CAS  PubMed  Google Scholar 

  82. Bhatti IA, Abhari BA, Fulda S. Identification of a synergistic combination of Smac mimetic and Bortezomib to trigger cell death in B-cell non-Hodgkin lymphoma cells. Cancer Lett. 2017;405:63–72.

    Article  CAS  PubMed  Google Scholar 

  83. Reilly KM, Kisor DF. Profile of nelarabine: use in the treatment of T-cell acute lymphoblastic leukemia. Onco Targets Ther. 2009;2:219–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kurtzberg J, Ernst TJ, Keating MJ, Gandhi V, Hodge JP, Kisor DF, et al. Phase I study of 506 U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23(15):3396–403.

    Article  CAS  PubMed  Google Scholar 

  85. Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, et al. Phase II study of nelarabine (compound 506 U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol. 2005;23(15):3376–82.

    Article  CAS  PubMed  Google Scholar 

  86. Commander LA, Seif AE, Insogna IG, Rheingold SR. Salvage therapy with nelarabine, etoposide, and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. Br J Haematol. 2010;150(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  87. Whitlock J, dalla Pozza L, Goldberg JM, Silverman LB, Ziegler DS, Attarbaschi A, et al. Nelarabine in combination with etoposide and cyclophosphamide is active in first relapse of childhood T-acute lymphocytic leukemia (T-ALL) and T-lymphoblastic lymphoma (T-LL). Blood. 2014;124(21):795.

    Google Scholar 

  88. Wilson WH, Young RM, Schmitz R, Yang Y, Pittaluga S, Wright G, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Younes A, Thieblemont C, Morschhauser F, Flinn I, Friedberg JW, Amorim S, et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) for treatment-naive patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 2014;15(9):1019–26.

    Article  CAS  PubMed  Google Scholar 

  90. Lee S, Day NS, Miles RR, Perkins SL, Lim MS, Ayello J, et al. Comparative genomic expression signatures of signal transduction pathways and targets in paediatric Burkitt lymphoma: a Children’s Oncology Group report. Br J Haematol. 2017;177(4):601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barr PM, Saylors GB, Spurgeon SE, Cheson BD, Greenwald DR, O’Brien SM, et al. Phase 2 study of idelalisib and entospletinib: pneumonitis limits combination therapy in relapsed refractory CLL and NHL. Blood. 2016;127(20):2411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zelenetz AD, Barrientos JC, Brown JR, Coiffier B, Delgado J, Egyed M, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017;18(3):297–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Frys S, Czuczman NM, Mavis C, Rolland DCM, Lim MS, Tiwari A, et al. Deregulation of the PI3K/Akt signal transduction pathway is associated with the development of chemotherapy resistance and can be effectively targeted to improve chemoresponsiveness in burkitt lymphoma pre-clinical models. Blood. 2014;124(21):1769.

    Google Scholar 

  95. Horwitz SM, Koch R, Porcu P, Oki Y, Moskowitz A, Perez M, et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood. 2018;131(8):888–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Place AE, Goldsmith K, Bourquin JP, Loh ML, Gore L, Morgenstern DA, et al. Accelerating drug development in pediatric cancer: a novel Phase I study design of venetoclax in relapsed/refractory malignancies. Future Oncol. 2018;14(21):2115–29.

    Article  CAS  PubMed  Google Scholar 

  97. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–92.

    Article  CAS  PubMed  Google Scholar 

  98. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–91.

    Article  CAS  PubMed  Google Scholar 

  99. Witzig TE, Reeder C, Han JJ, LaPlant B, Stenson M, Tun HW, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126(3):328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7.

    Article  CAS  PubMed  Google Scholar 

  101. Rheingold SR, Tasian SK, Whitlock JA, Teachey DT, Borowitz MJ, Liu X, et al. A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for second or greater relapse of acute lymphoblastic leukaemia: a Children’s Oncology Group study (ADVL1114). Br J Haematol. 2017;177(3):467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in cancer therapy: current evidence and future directions. Target Oncol. 2018;13(1):21–38.

    Article  PubMed  Google Scholar 

  103. Bose P, Simmons GL, Grant S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs. 2013;22(6):723–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Curr Oncol. 2009;16(2):36–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Leonard JP, AS LC, Smith MR, Noy A, Chirieac LR, Rodig SJ, et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood. 2012;119(20):4597–607.

    Article  CAS  PubMed  Google Scholar 

  106. Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120(17):3510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer. 2011;11(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  108. An N, Kraft AS, Kang Y. Abnormal hematopoietic phenotypes in Pim kinase triple knockout mice. J Hematol Oncol. 2013;6:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cho SH, Goenka S, Henttinen T, Gudapati P, Reinikainen A, Eischen CM, et al. PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood. 2009;113(11):2416–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gomez-Abad C, Pisonero H, Blanco-Aparicio C, Roncador G, Gonzalez-Menchen A, Martinez-Climent JA, et al. PIM2 inhibition as a rational therapeutic approach in B-cell lymphoma. Blood. 2011;118(20):5517–27.

    Article  CAS  PubMed  Google Scholar 

  111. Cohen AM, Grinblat B, Bessler H, Kristt D, Kremer A, Schwartz A, et al. Increased expression of the hPim-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma. 2004;45(5):951–5.

    Article  CAS  PubMed  Google Scholar 

  112. Hsi ED, Jung SH, Lai R, Johnson JL, Cook JR, Jones D, et al. Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a Cancer and Leukemia Group B 59909 correlative science study. Leuk Lymphoma. 2008;49(11):2081–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Brault L, Menter T, Obermann EC, Knapp S, Thommen S, Schwaller J, et al. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br J Cancer. 2012;107(3):491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell. 1989;56(4):673–82.

    Article  PubMed  Google Scholar 

  115. Kreuz S, Holmes KB, Tooze RM, Lefevre PF. Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas. Mol Cancer. 2015;14:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.

    Article  CAS  PubMed  Google Scholar 

  117. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010;70:27–56.

    Article  PubMed  Google Scholar 

  118. Maio M, Covre A, Fratta E, Di Giacomo AM, Taverna P, Natali PG, et al. Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res. 2015;21(18):4040–7.

    Article  CAS  PubMed  Google Scholar 

  119. Blum KA, Liu Z, Lucas DM, Chen P, Xie Z, Baiocchi R, et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br J Haematol. 2010;150(2):189–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Crump M, Coiffier B, Jacobsen ED, Sun L, Ricker JL, Xie H, et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann Oncol. 2008;19(5):964–9.

    Article  CAS  PubMed  Google Scholar 

  121. Lue JK, Amengual JE. Emerging EZH2 inhibitors and their application in lymphoma. Curr Hematol Malig Rep. 2018;13(5):369–82.

    Article  PubMed  Google Scholar 

  122. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bodor C, O’Riain C, Wrench D, Matthews J, Iyengar S, Tayyib H, et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia. 2011;25(4):726–9.

    Article  CAS  PubMed  Google Scholar 

  124. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.

    Article  CAS  PubMed  Google Scholar 

  125. Li J, Liu W, Luo H, Bao J. Insight into drug resistance mechanisms and discovery of potential inhibitors against wild-type and L1196 M mutant ALK from FDA-approved drugs. J Mol Model. 2016;22(9):231.

    Article  CAS  PubMed  Google Scholar 

  126. Delsol GJ, Falini B, Muller-Hermelink HK, Campo E, Jaffe ES, Gascoyne RD, Stein H, Kinney MC. Anaplastic Large Cell Lymphoma (ALCL), ALK-positive. In: Swerdlow SH, Campo E, Lee Harris N, editors. WHO classification of tumors of the hematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer (IARC); 2008. p. 312–6.

    Google Scholar 

  127. Majzner RG, Heitzeneder S, Mackall CL. Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell. 2017;31(4):476–85.

    Article  CAS  PubMed  Google Scholar 

  128. Eyre TA, Collins GP. Immune checkpoint inhibition in lymphoid disease. Br J Haematol. 2015;170(3):291–304.

    Article  PubMed  Google Scholar 

  129. Lulla P, Heslop HE. Checkpoint inhibition and cellular immunotherapy in lymphoma. Hematology Am Soc Hematol Educ Program. 2016;2016(1):390–6.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hude I, Sasse S, Engert A, Brockelmann PJ. The emerging role of immune checkpoint inhibition in malignant lymphoma. Haematologica. 2017;102(1):30–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dada R. Program death inhibitors in classical Hodgkin’s lymphoma: a comprehensive review. Ann Hematol. 2018;97(4):555–61.

    Article  CAS  PubMed  Google Scholar 

  132. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol. 2015;33(18):2092–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Comin-Anduix B, Escuin-Ordinas H, Ibarrondo FJ. Tremelimumab: research and clinical development. Onco Targets Ther. 2016;9:1767–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Burke GAA, Gross TG, Pillon M, Minard-colin V, Delgado RF, Zsíros J, et al. Results of inter-B-NHL Ritux 2010 – phase II study of DA-EPOCH-R for children and adolescents with primary mediastinal large B-cell lymphoma (PMLBL) on behalf of European Intergroup for Childhood Non Hodgkin’s Lymphoma (EICNHL) and Children’s Oncology Group (COG). Blood. 2017;130(Suppl 1):4124.

    Google Scholar 

  138. Zinzani PL, Ribrag V, Moskowitz CH, Michot JM, Kuruvilla J, Balakumaran A, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nagato T, Ohkuri T, Ohara K, Hirata Y, Kishibe K, Komabayashi Y, et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol Immunother. 2017;66(7):877–90.

    Article  CAS  PubMed  Google Scholar 

  140. Wang H, Wang L, Liu WJ, Xia ZJ, Huang HQ, Jiang WQ, et al. High post-treatment serum levels of soluble programmed cell death ligand 1 predict early relapse and poor prognosis in extranodal NK/T cell lymphoma patients. Oncotarget. 2016;7(22):33035–45.

    PubMed  PubMed Central  Google Scholar 

  141. Kwong YL, Chan TSY, Tan D, Kim SJ, Poon LM, Mow B, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42.

    Article  CAS  PubMed  Google Scholar 

  142. Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH. Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia. 2013;27(11):2251–3.

    Article  CAS  PubMed  Google Scholar 

  143. AHR MK, Porcu P, Foss FM, Moskowitz AJ, Shustov AR, Shanbhag S, Sokol L, Shine R, Fling SP, Li S, Rabhar Z, Kim J, Yang Y, Yearley J, Chartash EK, Townson SM, Subrahmanyam PB, Maecker H, Alizadeh AA, Dai J, Horwitz SM, Sharon E, Kohrt H, Cheever MA, Kim Y. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and sezary syndrome: clinical efficacy in a citn multicenter phase 2 study. Blood. 2016;128(22):181.

    Google Scholar 

  144. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stephen Ansell MEG, Margaret A, Shipp DG, Moskowitz A, Borello I, Popa-Mckiver M, Farsaci B, Zhu L, Lesokhin AM, Armand P. A phase 1 study of Nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128(22):183.

    Google Scholar 

  146. Salles G, Barrett M, Foa R, Maurer J, O’Brien S, Valente N, et al. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther. 2017;34(10):2232–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Barth MJ, Goldman S, Smith L, Perkins S, Shiramizu B, Gross TG, et al. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a children’s oncology group report. Br J Haematol. 2013;162(5):678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goldman S, Smith L, Galardy P, Perkins SL, Frazer JK, Sanger W, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a children’s oncology group report. Br J Haematol. 2014;167(3):394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Goldman S, Smith L, Anderson JR, Perkins S, Harrison L, Geyer MB, et al. Rituximab and FAB/LMB 96 chemotherapy in children with stage III/IV B-cell non-Hodgkin lymphoma: a children’s oncology group report. Leukemia. 2013;27(5):1174–7.

    Article  CAS  PubMed  Google Scholar 

  150. Meinhardt A, Burkhardt B, Zimmermann M, Borkhardt A, Kontny U, Klingebiel T, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28(19):3115–21.

    Article  CAS  PubMed  Google Scholar 

  151. Dunleavy K, Pittaluga S, Maeda LS, Advani R, Chen CC, Hessler J, et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med. 2013;368(15):1408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Morschhauser FA, Cartron G, Thieblemont C, Solal-Celigny P, Haioun C, Bouabdallah R, et al. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31(23):2912–9.

    Article  CAS  PubMed  Google Scholar 

  153. Vitolo U, Trneny M, Belada D, Burke JM, Carella AM, Chua N, et al. Obinutuzumab or rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3529–37.

    Article  CAS  PubMed  Google Scholar 

  154. Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10(16):5327–34.

    Article  CAS  PubMed  Google Scholar 

  155. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19.

    Article  CAS  PubMed  Google Scholar 

  156. van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131(1):13–29.

    PubMed  Google Scholar 

  157. Shah NN, Singavi AK, Harrington A. Daratumumab in primary effusion lymphoma. N Engl J Med. 2018;379(7):689–90.

    Article  PubMed  Google Scholar 

  158. Hari P, Raj RV, Olteanu H. Targeting CD38 in refractory extranodal natural killer cell-T-cell lymphoma. N Engl J Med. 2016;375(15):1501–2.

    Article  PubMed  Google Scholar 

  159. Goebeler ME, Knop S, Viardot A, Kufer P, Topp MS, Einsele H, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol. 2016;34(10):1104–11.

    Article  CAS  PubMed  Google Scholar 

  160. Cesano A, Gayko U. CD22 as a target of passive immunotherapy. Semin Oncol. 2003;30(2):253–7.

    Article  CAS  PubMed  Google Scholar 

  161. Perkins SL, Lones MA, Davenport V, Cairo MS. B-cell non-Hodgkin’s lymphoma in children and adolescents: surface antigen expression and clinical implications for future targeted bioimmune therapy: a children’s cancer group report. Clin Adv Hematol Oncol. 2003;1(5):314–7.

    PubMed  Google Scholar 

  162. Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science. 1988;240(4856):1198–201.

    Article  CAS  PubMed  Google Scholar 

  163. Advani A, Coiffier B, Czuczman MS, Dreyling M, Foran J, Gine E, et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol. 2010;28(12):2085–93.

    Article  CAS  PubMed  Google Scholar 

  164. Fayad L, Offner F, Smith MR, Verhoef G, Johnson P, Kaufman JL, et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31(5):573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ogura M, Tobinai K, Hatake K, Davies A, Crump M, Ananthakrishnan R, et al. Phase I study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2016;22(19):4807–16.

    Article  CAS  PubMed  Google Scholar 

  166. Cheng J, Zhu H, Choi JK. CD30 expression in pediatric neoplasms, study of 585 cases. Pediatr Dev Pathol. 2017;20(3):191–6.

    Article  PubMed  Google Scholar 

  167. Falini B, Pileri S, Pizzolo G, Durkop H, Flenghi L, Stirpe F, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.

    CAS  PubMed  Google Scholar 

  168. Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell. 1992;68(3):421–7.

    Article  CAS  PubMed  Google Scholar 

  169. Forero-Torres A, Leonard JP, Younes A, Rosenblatt JD, Brice P, Bartlett NL, et al. A phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol. 2009;146(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  170. Gravanis I, Tzogani K, van Hennik P, de Graeff P, Schmitt P, Mueller-Berghaus J, et al. The European medicines agency review of brentuximab vedotin (Adcetris) for the treatment of adult patients with relapsed or refractory CD30+ Hodgkin lymphoma or systemic anaplastic large cell lymphoma: summary of the scientific assessment of the committee for medicinal products for human use. Oncologist. 2016;21(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  171. de Claro RA, McGinn K, Kwitkowski V, Bullock J, Khandelwal A, Habtemariam B, et al. U.S. food and drug administration approval summary: brentuximab vedotin for the treatment of relapsed Hodgkin lymphoma or relapsed systemic anaplastic large-cell lymphoma. Clin Cancer Res. 2012;18(21):5845–9.

    Article  CAS  PubMed  Google Scholar 

  172. Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood. 2015;125(9):1394–402.

    Article  CAS  PubMed  Google Scholar 

  173. Zinzani PL, Pellegrini C, Chiappella A, Di Rocco A, Salvi F, Cabras MG, et al. Brentuximab vedotin in relapsed primary mediastinal large B-cell lymphoma: results from a phase 2 clinical trial. Blood. 2017;129(16):2328–30.

    Article  CAS  PubMed  Google Scholar 

  174. Younes A, Connors JM, Park SI, Fanale M, O’Meara MM, Hunder NN, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.

    Article  CAS  PubMed  Google Scholar 

  175. Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kumar A, Casulo C, Yahalom J, Schoder H, Barr PM, Caron P, et al. Brentuximab vedotin and AVD followed by involved-site radiotherapy in early stage, unfavorable risk Hodgkin lymphoma. Blood. 2016;128(11):1458–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab Vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.

    Article  CAS  PubMed  Google Scholar 

  178. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62.

    Article  CAS  PubMed  Google Scholar 

  181. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  183. Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9(9):510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bollard CM. Improving T-cell therapy for epstein-barr virus lymphoproliferative disorders. J Clin Oncol. 2013;31(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  185. Wistinghausen B, Gross TG, Bollard C. Post-transplant lymphoproliferative disease in pediatric solid organ transplant recipients. Pediatr Hematol Oncol. 2013;30(6):520–31.

    Article  CAS  PubMed  Google Scholar 

  186. Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808.

    Article  CAS  PubMed  Google Scholar 

  187. Bollard CM, Gottschalk S, Helen Huls M, Leen AM, Gee AP, Rooney CM. Good manufacturing practice-grade cytotoxic T lymphocytes specific for latent membrane proteins (LMP)-1 and LMP2 for patients with Epstein-Barr virus-associated lymphoma. Cytotherapy. 2011;13(5):518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121(26):5113–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vickers MA, Wilkie GM, Robinson N, Rivera N, Haque T, Crawford DH, et al. Establishment and operation of a good manufacturing practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167(3):402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Naik S, Nicholas SK, Martinez CA, Leen AM, Hanley PJ, Gottschalk SM, et al. Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. J Allergy Clin Immunol. 2016;137(5):1498–505. e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. O’Reilly RJ, Prockop S, Hasan AN, Koehne G, Doubrovina E. Virus-specific T-cell banks for ‘off the shelf’ adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51(9):1163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  194. Grant M, Bollard CM. Developing T-cell therapies for lymphoma without receptor engineering. Hematology Am Soc Hematol Educ Program. 2017;2017(1):622–31.

    PubMed  PubMed Central  Google Scholar 

  195. Leen A, Tzannou I, Bilgi M, Liu H, Vera JF, Gerdemann U, et al. Immunotherapy for lymphoma using T cells targeting multiple tumor associated antigens. Blood. 2015;126(23):186.

    Google Scholar 

  196. Williams KM, Hanley P, Grant M, Fortiz MF, Stanojevic M, Ismail M, et al. Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT. Blood. 2017;130(Suppl 1):4516.

    Google Scholar 

  197. Bollard CM, Lim MS, Gross TG, Committee COGN-HL. Children’s Oncology Group’s 2013 blueprint for research: non-Hodgkin lymphoma. Pediatr Blood Cancer. 2013;60(6):979–84.

    Article  PubMed  Google Scholar 

  198. Griffin TC, Weitzman S, Weinstein H, Chang M, Cairo M, Hutchison R, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52(2):177–81.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Wistinghausen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burke, A., Krueger, J., Wistinghausen, B. (2019). Novel Therapies in Paediatric NHL. In: Abla, O., Attarbaschi, A. (eds) Non-Hodgkin's Lymphoma in Childhood and Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-030-11769-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11769-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11768-9

  • Online ISBN: 978-3-030-11769-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics