Skip to main content

Principles of Immunotherapy

  • Chapter
  • First Online:
Non-Hodgkin's Lymphoma in Childhood and Adolescence
  • 742 Accesses

Abstract

While cure rates for pediatric non-Hodgkin lymphoma remain to be among the highest in pediatric oncology, this often comes with a significant cost in the form of delayed effects of therapy or secondary malignancy. Various strategies have been developed to address the challenges of maintaining current overall survival rates for low and intermediate stage patients while further improving treatment outcomes for advanced-stage disease and minimizing long-term morbidities for all. Personalized therapy will be needed based on risk factor assessment and incorporation of new agents with improved toxicity profiles to upfront therapy protocols. Immunotherapy relies on delivering greater specificity to a cytotoxic agent and/or enhancing the patient’s own immune response to malignancy. This can be accomplished using precise targeted monoclonal antibodies, immune checkpoint blockade, or the development of improved chimeric antigen receptor engineered T-cells. There is increasing data for the efficacy of adding monoclonal antibody therapy, either naked or conjugated, to upfront cytotoxic chemotherapy. Checkpoint inhibition and the use of CAR T-cells are newer additions to the therapeutic paradigms for pediatric non-Hodgkin lymphoma, but results from adult trials are encouraging. It remains to be seen what best combinations will prevail as we move forward with these novel agents so that we may improve long-term outcomes for all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188–95.

    CAS  PubMed  Google Scholar 

  2. Czuczman MS, Grillo-Lopez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol. 1999;17:268–76.

    Article  CAS  PubMed  Google Scholar 

  3. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  CAS  PubMed  Google Scholar 

  4. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379–91.

    Article  CAS  PubMed  Google Scholar 

  5. Rizzieri DA, Johnson JL, Byrd JC, et al. Improved efficacy using rituximab and brief duration, high intensity chemotherapy with filgrastim support for Burkitt or aggressive lymphomas: cancer and Leukemia Group B study 10 002. Br J Haematol. 2014;165:102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoelzer D, Walewski J, Döhner H, et al. Improved outcome of adult Burkitt lymphoma/leukemia with rituximab and chemotherapy: report of a large prospective multicenter trial. Blood. 2014;124:3870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Griffin TC, Weitzman S, Weinstein H, et al. A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2009;52:177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Meinhardt A, Burkhardt B, Zimmermann M, et al. Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol. 2010;28:3115–21.

    Article  CAS  PubMed  Google Scholar 

  9. Jäger U, Fridrik M, Zeitlinger M, et al. Rituximab serum concentrations during immuno-chemotherapy of follicular lymphoma correlate with patient gender, bone marrow infiltration and clinical response. Haematologica. 2012;97:1431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001.

    Article  CAS  PubMed  Google Scholar 

  11. Goldman S, Smith L, Anderson JR, et al. Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia. 2013;27:1174–7.

    Article  CAS  PubMed  Google Scholar 

  12. Goldman S, Smith L, Galardy P, et al. Rituximab with chemotherapy in children and adolescents with central nervous system and/or bone marrow-positive Burkitt lymphoma/leukaemia: a Children’s Oncology Group report. Br J Haematol. 2014;167:394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barth MJ, Goldman S, Smith L, et al. Rituximab pharmacokinetics in children and adolescents with de novo intermediate and advanced mature B-cell lymphoma/leukaemia: a Children’s Oncology Group report. Br J Haematol. 2013;162:678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minard-Colin V, Auperin A, Pillon M, et al. Results of the randomized intergroup trial inter-B-NHL Ritux 2010 for children and adolescents with high risk B-cell non Hodgkin’s lymphoma and mature acute leukemia: evaluation of efficacy in addition to standard LMB chemotherapy regimen. J Clin Oncol. 2016;34:abstr 10507.

    Article  Google Scholar 

  15. Patte C, Auperin A, Gerrard M, et al. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood. 2007;109:2773–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cairo MS, Gerrard M, Sposto R, et al. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood. 2007;109:2736–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldman S, Barth MJ, Oesterheld JE, et al. Preliminary results of a reduced burden of therapy trial by incorporation of rituximab and intrathecal liposomal cytarabine in children, adolescents and young adults with intermediate (FAB Group B) and high risk (FAB Group C) mature B-cell lymphoma/leukemia. Chicago: ASCO Annual Meeting; 2016 (abstract).

    Article  Google Scholar 

  18. Gross TG, Orjuela MA, Perkins SL, et al. Low-dose chemotherapy and rituximab for posttransplant lymphoproliferative disease (PTLD): a Children’s Oncology Group Report. Am J Transplant. 2012;12:3069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mossner E, Brunker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115:4393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sehn LH, Goy A, Offner FC, et al. Randomized phase II trial comparing obinutuzumab (GA101) with rituximab in patients with relapsed CD20+ indolent B-cell non-Hodgkin lymphoma: final analysis of the GAUSS study. J Clin Oncol. 2015;33:3467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morschhauser FA, Cartron G, Thieblemont C, et al. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large b-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31:2912–9.

    Article  CAS  PubMed  Google Scholar 

  22. Awasthi A, Ayello J, Van de Ven C, et al. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/-resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171:763–75.

    Article  CAS  PubMed  Google Scholar 

  23. Press OW, Leonard JP, Coiffier B, et al. Immunotherapy of non-Hodgkin’s lymphomas. Hematology Am Soc Hematol Educ Program. 2001;2001:221–40.

    Article  Google Scholar 

  24. Cooney-Qualter E, Krailo M, Angiolillo A, et al. A phase I study of 90yttrium-ibritumomab-tiuxetan in children and adolescents with relapsed/refractory CD20-positive non-Hodgkin’s lymphoma: a Children’s Oncology Group study. Clin Cancer Res. 2007;13:5652s–60s.

    Article  CAS  PubMed  Google Scholar 

  25. Witzig TE, Gordon LI, Cabanillas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20:2453–63.

    Article  CAS  PubMed  Google Scholar 

  26. Stein H, Foss HD, Durkop H, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    CAS  PubMed  Google Scholar 

  27. Chiarle R, Voena C, Ambrogio C, et al. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.

    Article  CAS  PubMed  Google Scholar 

  28. Lamant L, McCarthy K, d’Amore E, et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol. 2011;29:4669–76.

    Article  PubMed  Google Scholar 

  29. Alexander S, Kraveka JM, Weitzman S, et al. Advanced stage anaplastic large cell lymphoma in children and adolescents: results of ANHL0131, a randomized phase III trial of APO versus a modified regimen with vinblastine: a report from the children’s oncology group. Pediatr Blood Cancer. 2014;61:2236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brugieres L, Quartier P, Le Deley MC, et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children--a report from the French Society of Pediatric Oncology. Ann Oncol. 2000;11:53–8.

    Article  CAS  PubMed  Google Scholar 

  31. Le Deley MC, Rosolen A, Williams DM, et al. Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol. 2010;28:3987–93.

    Article  PubMed  Google Scholar 

  32. Lowe EJ, Sposto R, Perkins SL, et al. Intensive chemotherapy for systemic anaplastic large cell lymphoma in children and adolescents: final results of Children’s Cancer Group Study 5941. Pediatr Blood Cancer. 2009;52:335–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Younes A, Bartlett NL, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363:1812–21.

    Article  CAS  PubMed  Google Scholar 

  34. Fanale MA, Forero-Torres A, Rosenblatt JD, et al. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res. 2012;18:248–55.

    Article  CAS  PubMed  Google Scholar 

  35. Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30:2190–6.

    Article  CAS  PubMed  Google Scholar 

  36. Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130:2709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fanale MA, Horwitz SM, Forero-Torres A, et al. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32:3137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blanc V, Bousseau A, Caron A, et al. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17:6448–58.

    Article  CAS  PubMed  Google Scholar 

  39. Ribrag V, Dupuis J, Tilly H, et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20:213–20.

    Article  CAS  PubMed  Google Scholar 

  40. Trneny M, Verhoef G, Dyer MJ, et al. Starlyte phase II study of coltuximab ravtansine (CoR, SAR3419) single agent: clinical activity and safety in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL; NCT01472887). J Clin Oncol2014 ASCO Annual Meeting Abstracts. 2014;32:8506.

    Article  Google Scholar 

  41. Thieblemont C, de Guibert S, Dupuis J, et al. Phase II study of anti-CD19 antibody drug conjugate (SAR3419) in combination with rituximab: clinical activity and safety in patients with relapsed/refractory diffuse large B-cell lymphoma (NCT01470456). Blood. 2013;122:4395.

    Google Scholar 

  42. Moskowitz CH, Fanale MA, Shah BD, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in relapsed/refractory B-lineage non-Hodgkin lymphoma. Blood. 2015;126:182.

    Article  Google Scholar 

  43. Fathi AT, Borate U, DeAngelo DJ, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood. 2015;126:1328.

    Google Scholar 

  44. Fathi AT, Chen R, Trippett TM, et al. Interim analysis of a phase 1 study of the antibody-drug conjugate SGN-CD19A in relapsed or refractory B-lineage acute leukemia and highly aggressive lymphoma. Blood. 2014;124:963.

    Article  Google Scholar 

  45. Coleman M, Goldenberg DM, Siegel AB, et al. Epratuzumab: targeting B-cell malignancies through CD22. Clin Cancer Res. 2003;9:3991S–4S.

    CAS  PubMed  Google Scholar 

  46. Leonard JP, Coleman M, Ketas JC, et al. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol. 2003;21:3051–9.

    Article  CAS  PubMed  Google Scholar 

  47. Leonard JP, Coleman M, Ketas JC, et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res. 2004;10:5327–34.

    Article  CAS  PubMed  Google Scholar 

  48. Micallef IN, Maurer MJ, Wiseman GA, et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. Blood. 2011;118:4053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grant BW, Jung SH, Johnson JL, et al. A phase 2 trial of extended induction epratuzumab and rituximab for previously untreated follicular lymphoma: CALGB 50701. Cancer. 2013;119:3797–804.

    Article  CAS  PubMed  Google Scholar 

  50. Morschhauser F, Kraeber-Bodere F, Wegener WA, et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol. 2010;28:3709–16.

    Article  CAS  PubMed  Google Scholar 

  51. Chen AI, Lebovic D, Brunvand MW, et al. Final results of a phase I study of the anti-CD22 antibody-drug conjugate (ADC) DCDT2980S with or without rituximab (RTX) in patients (pts) with relapsed or refractory (R/R) B-cell non-Hodgkin’s lymphoma (NHL). Blood. 2013;122:4399.

    Google Scholar 

  52. Morschhauser F, Flinn I, Advani RH, et al. Updated results of a phase II randomized study (ROMULUS) of polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed/refractory non-Hodgkin lymphoma. Blood. 2014;124:4457.

    Google Scholar 

  53. Rytting M, Triche L, Thomas D, et al. Initial experience with CMC-544 (inotuzumab ozogamicin) in pediatric patients with relapsed B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer. 2014;61:369–72.

    Article  PubMed  Google Scholar 

  54. Wagner-Johnston ND, Goy A, Rodriguez MA, et al. A phase 2 study of inotuzumab ozogamicin and rituximab, followed by autologous stem cell transplant in patients with relapsed/refractory diffuse large B-cell lymphoma. Leuk Lymphoma. 2015;56(10):2863–9.

    Article  CAS  Google Scholar 

  55. Palanca-Wessels MC, Czuczman M, Salles G, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16:704–15.

    Article  CAS  PubMed  Google Scholar 

  56. Haas C, Krinner E, Brischwein K, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–53.

    Article  CAS  PubMed  Google Scholar 

  57. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974–7.

    Article  CAS  PubMed  Google Scholar 

  58. Viardot A, Goebeler M-E, Hess G, et al. Phase 2 study of bispecific T-cell engager (BiTE®) antibody blinatumomab in relapsed/refractory diffuse large B cell lymphoma. Blood. 2016;127:1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Teachey DT, Rheingold SR, Maude SL, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121:5154–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oak E, Bartlett NL. Blinatumomab for the treatment of B-cell lymphoma. Expert Opin Investig Drugs. 2015;24:715–24.

    Article  CAS  PubMed  Google Scholar 

  61. Eyre TA, Collins GP. Immune checkpoint inhibition in lymphoid disease. Br J Haematol. 2015;170:291–304.

    Article  PubMed  Google Scholar 

  62. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andorsky DJ, Yamada RE, Said J, et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17:4232–44.

    Article  CAS  PubMed  Google Scholar 

  64. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15:6446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galligan BM, Tsao-Wei D, Groshen S, et al. Efficacy and safety of combined rituximab and ipilimumab to treat patients with relapsed/refractory CD20+ B-cell lymphoma. Blood. 2015;126:3977.

    Google Scholar 

  66. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15:69–77.

    Article  CAS  PubMed  Google Scholar 

  67. Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lesokhin AM, Ansell SM, Armand P, et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. 2014;124:291.

    Google Scholar 

  69. Kershaw MH, Teng MW, Smyth MJ, et al. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol. 2005;5:928–40.

    Article  CAS  PubMed  Google Scholar 

  70. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schuster SJ, Svoboda J, Nasta S, et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas. J Clin Oncol. 2015;33:abstr 8516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Hochberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldman, S., Hochberg, J. (2019). Principles of Immunotherapy. In: Abla, O., Attarbaschi, A. (eds) Non-Hodgkin's Lymphoma in Childhood and Adolescence. Springer, Cham. https://doi.org/10.1007/978-3-030-11769-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11769-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11768-9

  • Online ISBN: 978-3-030-11769-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics