Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

The previous chapter presented physical characterizations of cavitation bubbles on the microscopic scale, looking, e.g., on the bubble shape, on its stability and evolution, and on the way bubble dynamics can explain energy focusing that leads to sonochemistry and sonoluminescence. These latter two phenomena are macroscopic manifestations of acoustic cavitation and can also serve to characterize bubbles and their activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young FR (2005) Sonoluminescence. CRC Press, New York

    Google Scholar 

  2. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris R, Maric D, Reid JP, Ceriani E, Rivas DF, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Thagard SM, Minakata D, Neyts EC, Pawlat J, Petrovic ZL, Pflieger R, Reuter S, Schram DC, Schroter S, Shiraiwa M, Tarabova B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25

    Article  Google Scholar 

  3. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434:52–55

    Article  CAS  Google Scholar 

  4. Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95

    Google Scholar 

  5. Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ​+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803

    Google Scholar 

  6. Michel A (1957) Das C2Σ +- A2Σ+- Bandensystem von OH, Zeitschrift Für Naturforschung Part A-Astrophysik Physik Und Physikalische Chemie 12:887–896

    Google Scholar 

  7. Carlone C, Dalby FW (1969) Spectrum of hydroxyl radical. Can J Phys 47:1945–1957

    Article  CAS  Google Scholar 

  8. Luque J, Crosley DR (1999) LIFBASE: database and spectral simulation. In: SRI international report MP 99-009

    Google Scholar 

  9. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci Technol 12:125–138

    Article  CAS  Google Scholar 

  10. Flint EB, Suslick KS (1991) The temperature of cavitation. Science 253:1397–1399

    Article  CAS  Google Scholar 

  11. Didenko YT, McNamara WB, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817–5818

    Article  CAS  Google Scholar 

  12. McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772–775

    Article  CAS  Google Scholar 

  13. Xu HX, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angewandte Chemie-International Edition 49:1079–1082

    Article  CAS  Google Scholar 

  14. Eddingsaas NC, Suslick KS (2007) Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 129:3838–3839

    Article  CAS  Google Scholar 

  15. Xu HS, Suslick KS (2010) Molecular emission and temperature measurements from single-bubble sonoluminescence. Phys Rev Lett 104:244301

    Google Scholar 

  16. Pflieger R, Ndiaye AA, Chave T, Nikitenko SI (2015) Influence of ultrasonic frequency on Swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions. J Phys Chem B 119:284–290

    Article  Google Scholar 

  17. Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279

    Google Scholar 

  18. Suslick KS, Eddingsaas NC, Flannigan DJ, Hopkins SD, Xu HX (2011) Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrason Sonochem 18:842–846

    Article  CAS  Google Scholar 

  19. Ciawi E, Ashokkumar M, Grieser F (2006) Limitations of the methyl radical recombination method for acoustic cavitation bubble temperature measurements in aqueous solutions. J Phys Chem B 110:9779–9781

    Article  CAS  Google Scholar 

  20. Ciawi E, Rae J, Ashokkumar M, Grieser F (2006) Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J Phys Chem B 110:13656–13660

    Article  CAS  Google Scholar 

  21. Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867

    Article  CAS  Google Scholar 

  22. Flannigan DJ, Suslick KS (2013) Non-Boltzmann population distributions during single-bubble sonoluminescence. J Phys Chem B 117:15886–15893

    Article  CAS  Google Scholar 

  23. Gigosos MA (2014) Stark broadening models for plasma diagnostics. J Phys D Appl Phys 47

    Article  Google Scholar 

  24. Margenau H, Lewis M (1959) Structure of spectral lines from plasmas. Rev Mod Phys 31:569–615

    Article  CAS  Google Scholar 

  25. Lepoint-Mullie F, Voglet N, Lepoint T, Avni R (2001) Evidence for the emission of’alkali-metal-noble-gas’ van der Waals molecules from cavitation bubbles. Ultrason Sonochem 8:151–158

    Article  CAS  Google Scholar 

  26. Sehgal C, Steer RP, Sutherland RG, Verrall RE (1979) Sonoluminescence of argon saturated alkali-metal salt-solutions as a probe of acoustic cavitation. J Chem Phys 70:2242–2248

    Article  CAS  Google Scholar 

  27. Choi PK, Abe S, Hayashi Y (2008) Sonoluminescence of Na atom from NaCl solutions doped with ethanol. J Phys Chem B 112:918–922

    Article  CAS  Google Scholar 

  28. Kazachek MV, Gordeychuk TV (2009) Estimation of the cavitation peak pressure using the Na D-line structure in the sonoluminescence spectra. Tech Phys Lett 35:193–196

    Article  CAS  Google Scholar 

  29. Flannigan DJ, Hopkins SD, Camara CG, Putterman SJ, Suslick KS (2006) Measurement of pressure and density inside a single sonoluminescing bubble. Phys Rev Lett 96

    Google Scholar 

  30. Derkaoui N, Rond C, Gries T, Henrion G, Gicquel A (2014) Determining electron temperature and electron density in moderate pressure H2/CH4 microwave plasma. J Phys D Appl Phys 47

    Google Scholar 

  31. Gicquel A, Chenevier M, Hassouni K, Tserepi A, Dubus M (1998) Validation of actinometry for estimating relative hydrogen atom densities and electron energy evolution in plasma assisted diamond deposition reactors. J Appl Phys 83:7504–7521

    Article  CAS  Google Scholar 

  32. Shatas AA, Hu YZ, Irene EA (1992) Langmuir probe and optical-emission studies of Ar, O2, and N2 plasmas produced by an electron-cyclotron resonance microwave source. J Vac Sci Technol A-Vac Surfaces Films 10:3119–3124

    Article  CAS  Google Scholar 

  33. Mehdi T, Legrand PB, Dauchot JP, Wautelet M, Hecq M (1993) Optical-emission diagnostics of an RF magnetron sputtering discharge. Spectrochim Acta Part B-Atomic Spectrosc 48:1023–1033

    Article  Google Scholar 

  34. Belmonte T, Noel C, Gries T, Martin J, Henrion G (2015) Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas. Plasma Sources Sci Technol 24

    Article  Google Scholar 

  35. Lepoint-Mullie F, De Pauw D, Lepoint T, Supiot P, Avni R (1996) Nature of the “extreme conditions” in single sonoluminescing bubbles (vol 100, p 12140). J Phys Chem A 103(1999):3346

    Google Scholar 

  36. Lepoint T, Lepoint-Mullie F, Avni R (1996) Plasma diagnostics and sonoluminescence. J Acoust Soc Am 100:2677

    Article  Google Scholar 

  37. Flannigan DJ, Suslick KS (2010) Inertially confined plasma in an imploding bubble. Nat Phys 6:598–601

    Article  CAS  Google Scholar 

  38. Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175

    Article  CAS  Google Scholar 

  39. Ouerhani T, Pflieger R, Ben Messaoud E, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2 − Ar mixtures. J Phys Chem B 119:15885–15891

    Article  CAS  Google Scholar 

  40. Taylor KJ, Jarman PD (1970) Spectra of sonoluminescence. Aust J Phys Aust J Phys 23:319

    Google Scholar 

  41. Wall M, Ashokkumar M, Tronson R, Grieser F (1999) Multibubble sonoluminescence in aqueous salt solutions. Ultrason Sonochem 6:7–14

    Article  CAS  Google Scholar 

  42. Nakajima R, Hayashi Y, Choi PK (2015) Mechanism of two types of Na emission observed in sonoluminescence. Jpn J Appl Phys 54

    Article  Google Scholar 

  43. Abe S, Choi PK (2009) Spatiotemporal separation of Na-atom emission from continuum emission in sonoluminescence. Jpn J Appl Phys 48

    Google Scholar 

  44. Cairos C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051

    Article  CAS  Google Scholar 

  45. Hatanaka S, Hayashi S, Choi PK (2010) Sonoluminescence of Alkali-Metal atoms in sulfuric acid: comparison with that in water. Jpn J Applied Phys 49

    Article  Google Scholar 

  46. Xu HX, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060−+

    Article  CAS  Google Scholar 

  47. Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676

    Article  CAS  Google Scholar 

  48. Sunartio D, Yasui K, Tuziuti T, Kozuka T, Iida Y, Ashokkumar M, Grieser F (2007) Correlation between Na* emission and “chemically active” acoustic cavitation bubbles. Chem Phys Chem 8:2331–2335

    Article  CAS  Google Scholar 

  49. Cairos C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118

    Google Scholar 

  50. Sharipov GL, Gainetdinov RK, Abdrakhmanov AM (2003) Sonoluminescence of aqueous solutions of lanthanide salts. Russ Chem Bull 52:1969–1973

    Article  CAS  Google Scholar 

  51. Pflieger R, Schneider J, Siboulet B, Mohwald H, Nikitenko SI (2013) Luminescence of trivalent lanthanide ions excited by single-bubble and multibubble cavitations. J Phys Chem B 117:2979–2984

    Article  CAS  Google Scholar 

  52. Pflieger R, Cousin V, Barre N, Moisy P, Nikitenko SI (2012) Sonoluminescence of Uranyl ions in aqueous solutions. Chem Eur J 18:410–414

    Article  CAS  Google Scholar 

  53. Lee J, Ashokkumar M, Kentish S, Grieser F (2005) Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J Am Chem Soc 127:16810–16811

    Article  CAS  Google Scholar 

  54. Brotchie A, Statham T, Zhou MF, Dharmarathne L, Grieser F, Ashokkumar M (2010) Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases. Langmuir 26:12690–12695

    Article  CAS  Google Scholar 

  55. Brotchie A, Grieser F, Ashokkumar M (2009) Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys Rev Lett 102

    Google Scholar 

  56. Pflieger R, Lee J, Nikitenko SI, Ashokkumar M (2015) Influence of He and Ar flow rates and NaCl concentration on the size distribution of bubbles generated by power ultrasound. J Phys Chem B 119:12682–12688

    Article  CAS  Google Scholar 

  57. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Pflieger .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pflieger, R., Nikitenko, S.I., Cairós, C., Mettin, R. (2019). Sonoluminescence. In: Characterization of Cavitation Bubbles and Sonoluminescence. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-11717-7_2

Download citation

Publish with us

Policies and ethics