Skip to main content

Bubble Dynamics

  • Chapter
  • First Online:
  • 694 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Bubble dynamics and cavitation have been recognized as a relevant topic of physics and engineering for more than 100 years. Starting with erosion problems at ship propellers end of the nineteenth century [1, 2], experimental and theoretical research went on to intense ultrasound fields in liquids after World War I [3]. However, the phenomena are intrinsically difficult to investigate since the involved spatial scales span many orders of magnitude, the timescales are partly extremely fast, and the behavior includes important nonlinearities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More realistic descriptions of bubbles might consider non-equilibrium conditions like heat conduction, inhomogeneous bubble interior, or dynamics of evaporation/condensation of liquid/vapor at the bubble wall.

  2. 2.

    Free submicron bubbles should dissolve quite rapidly because of surface tension, as suggested above. However, bubbles might be stabilized in crevices of solid particles [8] or be stabilized statically or dynamically when covered partly with hydrophobic material; see [8, 22].

  3. 3.

    The term “stable” for gas dominated bubble dynamics is somehow unfortunate since less strong collapsing bubbles can nevertheless exhibit instabilities (e.g., develop non-spherical shapes and splitting), while inertial cavitation bubbles can well oscillate in stable regimes. The older notion of “transient” cavitation for inertial cavitation is misleading in the same sense.

  4. 4.

    The unlimited expansion occurs theoretically in an unbounded liquid volume. In a real situation, the nucleus expansion will be stopped by boundary conditions, but it can reach a “macroscopic” bubble size.

  5. 5.

    In a way as a contrast, “top-down” descriptions of cavitation start from multiphase flow of liquid and vapor (for hydrodynamic cavitation, see [9, 39]) or from sound propagation in bubbly media (see [40,41,42,43,44,45]).

  6. 6.

    Pressure gradients of the sound field are typically much larger than the hydrostatic pressure gradient, and therefore buoyancy can often be neglected in the discussion of acoustic cavitation bubbles. Only for larger bubbles and weak driving, buoyancy might supersede acoustic forces which leads to a rise of the bubble to the surface.

  7. 7.

    While secondary Bjerknes forces indeed decay with the squared distance like gravitational forces, there are differences in that stars move without friction and do typically not collide. Furthermore, the secondary Bjerknes force changes for very close or far distances, and the “mass” of a bubble depends on the driving pressure at its position. Nevertheless, partly interesting similarities exist visually between bubble structures and galactic structures.

  8. 8.

    Inactive larger bubbles can be trapped at pressure nodes of a standing acoustic wave.

  9. 9.

    Details of liquid injection are still subject of investigation. At least, three scenarios could take place: (I) During re-expansion of the bubble, the spherical shape is roughly restored, and remnants of the jet might disintegrate into droplets, remaining in the gas phase until the next collapse happens. (II) The jet impact onto the opposite bubble wall can cause nanosplashes that disintegrate into droplets [95]. (III) The rear side of the bubble might become unstable and split off droplets. In this context, note the non-smooth bubble backside in Fig. 1.17.

References

  1. Silberrad D (1912) Propeller erosion. Engineering 33:33–35

    Google Scholar 

  2. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Phil Mag Ser 6(34):94–98

    Article  Google Scholar 

  3. Wood RW, Loomis AL (1927) XXXVIII The physical and biological effects of high-frequency sound-waves of great intensity. Lond, Edinb, Dublin Philos Mag J Sci 4(22):417–436

    Article  CAS  Google Scholar 

  4. Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1, Part B. Academic Press, New York, pp 57–172

    Google Scholar 

  5. Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New York

    Book  Google Scholar 

  6. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61(3):159–251

    Article  Google Scholar 

  7. Young FR (1989) Cavitation. McGraw-Hill, London

    Google Scholar 

  8. Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  9. Brennen EG (1995) Cavitation and bubble dynamics. Oxford University Press, New York

    Google Scholar 

  10. Young FR (2005) Sonoluminescence. CRC Press, Boca Raton

    Google Scholar 

  11. Mason TJ, Lorimer JP (1988) Sonochemistry. Wiley

    Google Scholar 

  12. Mason TJ (ed) (1999) Advances in sonochemistry, vol 5. Jai Press, Stamford

    Google Scholar 

  13. Lauterborn W, Kurz T, Mettin R, Ohl C-D (1999) Experimental and theoretical bubble dynamics. Adv Chem Phys 110: 295–380

    Google Scholar 

  14. Ohl C-D, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc Lond A 357:269–294

    Article  CAS  Google Scholar 

  15. Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198

    Google Scholar 

  16. Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73:106501

    Article  CAS  Google Scholar 

  17. Lauterborn W, Mettin R (2015) Acoustic cavitation: bubble dynamics in high-power ultrasonic fields. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 37–78

    Google Scholar 

  18. Mettin R, Cairós C (2016) Bubble dynamics and observations. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore

    Chapter  Google Scholar 

  19. Harvey EN, McElroy WD, Whiteley AH (1947) On cavity formation in water. J Appl Phys 18(2):162–172

    Article  CAS  Google Scholar 

  20. Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26(6):984–989

    Article  Google Scholar 

  21. Crum LA (1982) Nucleation and stabilization of microbubbles in liquids. Appl Sci Res 38(1):101–115

    Article  CAS  Google Scholar 

  22. Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32(43):11101–11110

    Article  CAS  PubMed  Google Scholar 

  23. Keller AP (1974) Investigations concerning scale effects of the inception of cavitation. In: Proceedings I mechanical engineering conference on cavitation, pp 109–117

    Google Scholar 

  24. Reuter F, Lesnik S, Ayaz-Bustami K, Brenner G, Mettin R (2018) Bubble size measurements in different acoustic cavitation structures: filaments, clusters, and the acoustically cavitated jet. Ultrason Sonochem. Available online 16 May 2018. https://doi.org/10.1016/j.ultsonch.2018.05.003

  25. Minnaert M (1933) On musical air bubbles and the sounds of running water. Phil Mag Ser 7(16):235–248

    Article  Google Scholar 

  26. Parlitz U, Englisch V, Scheffczyk C, Lauterborn W (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061

    Article  Google Scholar 

  27. Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318

    Article  CAS  Google Scholar 

  28. Hilgenfeldt S, Brenner MP, Grossmann S, Lohse D (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204

    Article  CAS  Google Scholar 

  29. Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457–478

    Article  CAS  Google Scholar 

  30. Kamath V, Prosperetti A, Egolfopoulos FN (1993) A theoretical study of sonoluminescence. J Acoust Soc Am 94(1):248–260

    Article  Google Scholar 

  31. Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750

    Article  CAS  Google Scholar 

  32. Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628

    Article  Google Scholar 

  33. Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24–30

    Article  CAS  PubMed  Google Scholar 

  34. Thiemann A, Holsteyns F, Cairos C, Mettin R (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676

    Article  CAS  PubMed  Google Scholar 

  35. Blake FG (1949) Harvard University Acoustic Research Laboratory, Tech. Mem. No. 12, 1949 (unpublished)

    Google Scholar 

  36. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc Lond, Sect B 63(9):674

    Article  Google Scholar 

  37. Louisnard O, Gomez F (2003) Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys Rev E 67:036610

    Google Scholar 

  38. Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics—response curves and more. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence; Proceedings of the NATO advanced study institute, Leavenworth (WA), USA, 18–29 Aug 1997. Kluwer Academic Publishers, Dordrecht, pp 63–72

    Chapter  Google Scholar 

  39. Franc J-P, Michel J-M (2006) Fundamentals of cavitation. Springer science & Business media, Berlin

    Google Scholar 

  40. Van Wijngaarden L (1972) One-dimensional flow of liquids containing small gas bubbles. Ann Rev Fluid Mech 4:369–394

    Article  Google Scholar 

  41. Caflisch RE, Miksis MJ, Papanicolaou GC, Ting L (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259–273

    Article  Google Scholar 

  42. Commander KW, Prosperetti A (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732–746

    Article  Google Scholar 

  43. Akhatov I, Parlitz U, Lauterborn W (1996) Towards a theory of self-organization phenomena in bubble-liquid mixtures. Phys Rev E 54:4990

    Article  CAS  Google Scholar 

  44. Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65

    Article  CAS  PubMed  Google Scholar 

  45. Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part II: primary Bjerknes force and bubble structures. Ultrason. Sonochem. 19:66–76

    Article  CAS  PubMed  Google Scholar 

  46. Cairós C, Schneider J, Pflieger R, Mettin R (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044–2051

    Article  PubMed  CAS  Google Scholar 

  47. Mettin R, Cairós C (2019) Leuchtende Blasen. Phys Unserer Zeit 50(1):38–42

    Article  Google Scholar 

  48. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A 201:192–196

    Article  Google Scholar 

  49. Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25(1):96–98

    Article  CAS  Google Scholar 

  50. Birkhoff G (1954) Note on Taylor instability. Q Appl Math 12(3):306–309

    Article  Google Scholar 

  51. Birkhoff G (1956) Stability of spherical bubbles. Q Appl Math 13(4):451–453

    Article  Google Scholar 

  52. Plesset MS, Mitchell TP (1956) On the stability of the spherical shape of a vapor cavity in a liquid. Q Appl Math 13(4):419–430

    Article  Google Scholar 

  53. Strube HW (1971) Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen. Acustica 25:289–303

    Google Scholar 

  54. Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15(6):495–506

    Article  CAS  Google Scholar 

  55. Hilgenfeldt S, Lohse D, Brenner MP (1996) Phase diagrams for sonoluminescing bubbles. Phys Fluids 8:2808

    Article  CAS  Google Scholar 

  56. Versluis M, Goertz DE, Palanchon P, Heitman IL, van der Meer SM, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through ultrasonic parametric driving. Phys Rev E 82(2):026321

    Article  CAS  Google Scholar 

  57. Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503

    Article  Google Scholar 

  58. Fyrillas MM, Szeri AJ (1994) Dissolution or growth of soluble spherical oscillating bubbles. J Fluid Mech 277:381–407

    Article  Google Scholar 

  59. Bjerknes VFK (1906) Fields of force. Columbia University Press, New York

    Google Scholar 

  60. Matula TJ, Cordry AM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527

    Article  Google Scholar 

  61. Akhatov I, Mettin R, Ohl C-D, Parlitz U, Lauterborn W (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747–3750

    Article  CAS  Google Scholar 

  62. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924–2931

    Article  CAS  Google Scholar 

  63. Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57(6):1363–1370

    Article  Google Scholar 

  64. Cairós C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118(6):064301

    Article  PubMed  Google Scholar 

  65. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  66. Klyachko LS (1934) Heating and ventilation. USSR J Otopl I Ventil (4)

    Google Scholar 

  67. Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10(3):550–554

    Article  CAS  Google Scholar 

  68. Krefting D, Mettin R, Lauterborn W (2002) Kräfte in akustischen Kavitationsfeldern (Forces in acoustic cavitation fields). In Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 260–261

    Google Scholar 

  69. Apfel RE (1981) Acoustic cavitation prediction. J Acoust Soc Am 69(6):1624–1633

    Article  Google Scholar 

  70. Church CC (1988) Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. J Acoust Soc Am 83(6):2210–2217

    Article  CAS  PubMed  Google Scholar 

  71. Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36

    Google Scholar 

  72. Gaitan D, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183

    Article  Google Scholar 

  73. Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69:1182

    Article  CAS  PubMed  Google Scholar 

  74. Barber BP, Hiller RA, Löfstedt R, Putterman SJ, Weninger KR (1997) Defining the unknowns of sonoluminescence. Phys Rep 281:65–143

    Article  CAS  Google Scholar 

  75. Crum LA (2015) Resource paper: sonoluminescence. J Acoust Soc Am 138:2181–2205

    Article  PubMed  Google Scholar 

  76. Gompf B, Günther R, Nick G, Pecha R, Eisenmenger W (1997) Resolving sonoluminescence pulse width with time-correlated single photon counting. Phys Rev Lett 79:1405

    Article  CAS  Google Scholar 

  77. Chen W, Huang W, Liang Y, Gao X, Cui W (2008) Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys Rev E 78(3):035301

    Article  CAS  Google Scholar 

  78. Hiller R, Weninger K, Putterman SJ, Barber BP (1994) Effect of noble gas doping in single-bubble sonoluminescence. Science 266(5183):248–250

    Article  CAS  PubMed  Google Scholar 

  79. Schneider J, Pflieger R, Nikitenko SI, Shchukin D, Möhwald H (2010) Line emission of sodium and hydroxyl radicals in single-bubble sonoluminescence. J Phys Chem A 115(2):136–140

    Article  PubMed  CAS  Google Scholar 

  80. Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301

    Article  PubMed  CAS  Google Scholar 

  81. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature 434(7029):52

    Article  CAS  PubMed  Google Scholar 

  82. Lepoint T, Lepoint-Mullie F, Henglein A (1999) Single bubble sonochemistry. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer Academic Publishers, Dordrecht, pp 285–290

    Chapter  Google Scholar 

  83. Verraes T, Lepoint-Mullie F, Lepoint T, Longuet-Higgins M (2000) Experimental study of the liquid flow near a single sonoluminescent bubble. J Acoust Soc Am 108:117

    Article  CAS  PubMed  Google Scholar 

  84. Troia A, Madonna Ripa D, Lago S, Spagnolo R (2004) Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 11:317

    Article  CAS  PubMed  Google Scholar 

  85. Didenko YT, Suslick KS (2002) The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418(6896):394

    Article  CAS  PubMed  Google Scholar 

  86. Mettin R, Lindinger B, Lauterborn W (2002) Bjerknes-Instabilität levitierter Einzelblasen bei geringem statischen Druck (Bjerknes-instability of levitated single bubbles at low static pressure). In: Jekosch U (ed) Fortschritte der Akustik—DAGA 2002, Bochum. DEGA, Oldenburg, pp 264–265

    Google Scholar 

  87. Rosselló JM, Dellavale D, Bonetto FJ (2013) Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures. Phys Rev E 88:033026

    Article  CAS  Google Scholar 

  88. Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602

    Article  CAS  PubMed  Google Scholar 

  89. Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans Roy Soc Lond A 260:221–240

    Article  Google Scholar 

  90. Calvisi M, Lindau O, Blake JR, Szeri AJ (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101

    Article  CAS  Google Scholar 

  91. Vuong VQ, Szeri AJ, Young DA (1999) Shock formation within sonoluminescence bubbles. Phys Fluids 11:10–17

    Article  CAS  Google Scholar 

  92. Schanz D, Metten B, Kurz T, Lauterborn W (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019

    Article  CAS  Google Scholar 

  93. Xu H, Eddingsaas NC, Suslick KS (2009) Spatial separation of cavitating bubble populations: the nanodroplet injection model. J Am Chem Soc 131:6060–6061

    Article  CAS  PubMed  Google Scholar 

  94. Xu H, Glumac NG, Suslick KS (2010) Temperature inhomogeneity during multibubble sonoluminescence. Angew. Chemie 122(6):1097–1100

    Article  Google Scholar 

  95. Lechner C, Koch M, Lauterborn W, Mettin R (2017) Pressure and tension waves from bubble collapse near a solid boundary: a numerical approach. J Acoust Soc Am 142(6):3649–3659

    Article  PubMed  Google Scholar 

  96. Blake JR, Hooton MC, Robinson PB, Tong RP (1997) Collapsing cavities, toroidal bubbles and jet impact. Phil Trans Roy Soc Lond A 355:537–550

    Article  CAS  Google Scholar 

  97. Reuter F, Gonzalez-Avila SR, Mettin R, Ohl C-D (2017) Flow fields and vortex dynamics of bubbles collapsing near a solid boundary. Phys Rev Fluids 2:064202

    Article  Google Scholar 

  98. Reuter F, Mettin R (2018) Electrochemical wall shear rate microscopy of collapsing bubbles. Phys Rev Fluids 3:063601

    Article  Google Scholar 

  99. Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47(2):283–290

    Article  Google Scholar 

  100. Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72(2):391–399

    Article  Google Scholar 

  101. Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116

    Article  CAS  Google Scholar 

  102. Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119–123

    Article  CAS  PubMed  Google Scholar 

  103. Fuchs FJ (2015) Ultrasonic cleaning and washing of surfaces. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Elsevier, pp 577–610

    Google Scholar 

  104. Mason TJ (2016) Ultrasonic cleaning: an historical perspective. Ultrason Sonochem 29:519–523

    Article  CAS  PubMed  Google Scholar 

  105. Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562

    Article  CAS  PubMed  Google Scholar 

  106. Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non–spherical bubbles. Phil Trans R Soc Lond A 357:251

    Article  CAS  Google Scholar 

  107. Pearson A, Blake JR, Otto SR (2004) Jets in bubbles. J Eng Math 48:391–412

    Article  CAS  Google Scholar 

  108. Lauterborn W, Lechner C, Koch M, Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid. IMA J. Appl. Math 83(4):556–589

    Article  Google Scholar 

  109. Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N, Farhat M (2016) Scaling laws for jets of single cavitation bubbles. J Fluid Mech 802:263–293

    Article  Google Scholar 

  110. Brujan EA, Noda T, Ishigami A, Ogasawara T, Takahira H (2018) Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls. J Fluid Mech 841:28–49

    Article  CAS  Google Scholar 

  111. Ohl SW, Ohl CD (2016) Acoustic cavitation in a microchannel. In: Ashokkumar M et al (eds) Handbook of ultrasonics and sonochemistry. Springer Science + Business Media, Singapore, pp 99–135

    Chapter  Google Scholar 

  112. Koch M, Lechner Ch, Reuter F, Köhler K, Mettin R, Lauterborn W (2016) Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM. Comput Fluids 126:71–90

    Article  Google Scholar 

  113. Lindau O, Lauterborn W (2003) Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J Fluid Mech 479:327–348

    Article  CAS  Google Scholar 

  114. Falkovich G (2011) Fluid mechanics, a short course for physicists. Cambridge University Press

    Google Scholar 

  115. Blake JR, Leppinen DM, Wang Q (2015) Cavitation and bubble dynamics: the Kelvin impulse and its applications. Interface Focus 5(5):20150017

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224

    Article  Google Scholar 

  117. Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016

    Article  CAS  Google Scholar 

  118. Hatanaka S, Hayashi S, Choi P-K (2010) Sonoluminescence of alkali-metal atoms in sulfuric acid: comparison with that in water. Jpn J Appl Phys 49:07HE01

    Article  CAS  Google Scholar 

  119. Yasui K (2018) Acoustic cavitation and bubble dynamics. Springer Briefs in Molecular Science—Ultrasound and Sonochemistry, Springer International Publishing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Pflieger .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pflieger, R., Nikitenko, S.I., Cairós, C., Mettin, R. (2019). Bubble Dynamics. In: Characterization of Cavitation Bubbles and Sonoluminescence. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-030-11717-7_1

Download citation

Publish with us

Policies and ethics