Advertisement

Photodeactivation Channels of Transition Metal Complexes: A Computational Chemistry Perspective

  • Daniel EscuderoEmail author
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)

Abstract

A detailed molecular-level understanding of the excited-state (ES) decay dynamics of transition metal complexes (TMCs) is vital to develop the next generation of light-active components in a wide variety of applications related to photochemistry, including optoelectronics, photocatalysis, dye-sensitized solar cells, artificial photosynthesis, photonics sensors and switches, and bioimaging. After photoexcitation, TMCs can undergo a plethora of interconnected relaxation processes, which compete to each other and are controlled by the subtle interplay of electronic and geometrical rearrangements that take place during the ES deactivation dynamics at different timescales. Intrinsic factors such as (i) the spin and character of the electronically ES involved in the process and (ii) the energetic alignment and effective couplings between these states do play a protagonist role in determining the preferred deactivation channels. Extrinsic factors, such as temperature, pressure, excitation wavelength, and environmental effects, can often strongly modify the outcome of the photochemical processes. As kinetic control is always at play, only the fastest processes among all possible deactivation channels are generally observed. Due to their high density of ES of various characters, TMCs usually display rich and chameleonic ES and photochemical properties. Computational chemistry is a powerful and unique tool to provide a microscopic and time-resolved description of these complex processes, and it often constitutes the fundamental ingredient for the interpretation of time-resolved absorption and emission spectroscopic measurements. This chapter provides first a general overview on this complex topic, followed by an overview of the state-of-the-art quantum chemical and reaction dynamics methods to study the photodeactivation dynamics of TMCs and finally illustrates the progress and challenges in this field with recent examples from the literature. Importantly, these examples cover the ultrafast ES decay regime but also the long-lived photodeactivation from thermally equilibrated ES.

Keywords

Transition metal complexes photochemistry Excited states Deactivation dynamics Quantum chemistry Excited-state Reaction dynamics methods 

References

  1. 1.
    Daniel C, Gourlaouen C (2017) Chemical bonding alteration upon electronic excitation in transition metal complexes. Coord Chem Rev 344:131–149CrossRefGoogle Scholar
  2. 2.
    Daniel C (2015) Photochemistry and photophysics of transition metal complexes: quantum chemistry. Coord Chem Rev 282–283:19–32CrossRefGoogle Scholar
  3. 3.
    González L, Escudero D, Serrano-Andrés L (2012) Progress and challenges in the calculation of electronic excited states. Chem Phys Chem 13:28–51PubMedCrossRefGoogle Scholar
  4. 4.
    Stufkens DJ, Vlček A (1998) Ligand-dependent excited state behavior of Re(I) and Ru(II) carbonyl-diimine complexes. Coord Chem Rev 177:127–179CrossRefGoogle Scholar
  5. 5.
    Mai S, Plasser F, Dorn J, Fumanal M, Daniel C, González L (2018) Quantitative wave function analysis for excited states of transition metal complexes. Coord Chem Rev 361:74–97CrossRefGoogle Scholar
  6. 6.
    Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506PubMedCrossRefGoogle Scholar
  7. 7.
    Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys Chem Chem Phys 14:5383–5388PubMedCrossRefGoogle Scholar
  8. 8.
    Kasha M (1950) Characterization of electronic transitions in complex molecules. Discuss Faraday Soc 9:14–19CrossRefGoogle Scholar
  9. 9.
    Penfold TJ, Gindensperger E, Daniel C, Marian CM (2018) Spin-vibronic mechanism for intersystem crossing. Chem Rev 118:6975–7025PubMedCrossRefGoogle Scholar
  10. 10.
    Baryshnikov G, Minaev B, Ågren H (2017) Theory and calculation of the phosphorescence phenomenon. Chem Rev 117:6500–6537PubMedCrossRefGoogle Scholar
  11. 11.
    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238PubMedCrossRefGoogle Scholar
  12. 12.
    Sousa C, Alías M, Domingo A, de Graaf C (2018) Deactivation of excited states in transition metal complexes: insight from computational chemistry. Chem Eur J.  https://doi.org/10.1002/chem.201801990
  13. 13.
    Chergui M (2015) Ultrafast photophysics of transition metal complexes. Acc Chem Res 48:801–808PubMedCrossRefGoogle Scholar
  14. 14.
    Chergui M (2012) On the interplay between charge, spin and structural dynamics in transition metal complexes. Dalton Trans 41:13022–13029PubMedCrossRefGoogle Scholar
  15. 15.
    Tang KC, Liu KL, Chen IC (2004) Rapid intersystem crossin in highly phosphorescent iridium complexes. Chem Phys Lett 386:437–441CrossRefGoogle Scholar
  16. 16.
    Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Szebera J, Zalis S, Vlček A, Chergui M (2008) Femtosecond fluorescence and intersystem crossing in Rhenium(I) carbonyl-bipyridine complexes. J Am Chem Soc 130:8967–8974PubMedCrossRefGoogle Scholar
  17. 17.
    Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176CrossRefGoogle Scholar
  18. 18.
    Damrauer NH, Cerullo G, Yeh A, Boussie TR, Shank CV, McCusker JK (1997) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+. Science 275:54–57PubMedCrossRefGoogle Scholar
  19. 19.
    van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Chergui M (2011) Vibrational relaxation and intersystem crossing of binuclear metal complexes in solution. J Am Chem Soc 133:305–315PubMedCrossRefGoogle Scholar
  20. 20.
    Kukura P, McCamant DW, Mathies RA (2007) Femtosecond stimulated raman spectroscopy. Annu Rev Phys Chem 58:461–488PubMedCrossRefGoogle Scholar
  21. 21.
    Yoon S, Kukura P, Stuart CM, Mathies RA (2006) Direct observation of the ultrafast intersystem crossing in tris (2, 2-bipyridine) Ruthenium(II) using femtosecond stimulated raman spectroscopy. Mol Phys 104:1275–1282CrossRefGoogle Scholar
  22. 22.
    Smeigh AL, Creelman M, Mathies RA, McCusker JK (2008) Femtosecond time-resolved optical and raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J Am Chem Soc 130:14105–14107PubMedCrossRefGoogle Scholar
  23. 23.
    Chergui M, Zewail AH (2009) Electron and X-ray methods of ultrafast structural dynamics: advances and applications. Chem Phys Chem 10:28–43PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang W, Alonso-Mori R, Bergmann U, Bressler C, Chollet M, Galler A, Gawelda W, Hadt RG, Hartsock RW, Kroll T, Kjaer KS, Kubicek K, Lemke HT, Liang HW, Meyer DA, Nielsen MM, Purser C, Robinson JS, Solomon EI, Sun Z, Sokaras D, van Driel TB, Vanko G, Weng TC, Zhu D, Gaffney KJ (2014) Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509:345–348PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jonas DM (2003) Two-dimensional femtosecond spectroscopy. Annu Rev Phys Chem 54:425–463PubMedCrossRefGoogle Scholar
  26. 26.
    Carbery WP, Verma A, Turner DB (2017) Spin-orbit coupling drives femtosecond nonadiabatic dynamics in a transition metal compound. J Phys Chem Lett 8:1315–1322PubMedCrossRefGoogle Scholar
  27. 27.
    Heitz MC, Finger K, Daniel C (1997) Photochemistry of organometallics: quantum chemistry and photodissociation dynamics. Coord Chem Rev 159:171–193CrossRefGoogle Scholar
  28. 28.
    Ribbing C, Daniel C (1994) Spin-orbit coupled excited states in transition metal complexes: a configuration interaction treatment of HCo(CO)4. J Chem Phys 100:6591CrossRefGoogle Scholar
  29. 29.
    Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRefGoogle Scholar
  30. 30.
    Escudero D, Laurent A, Jacquemin D (2017) Time-dependent density functional theory: a tool to explore excited states. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos M, Reis HK, Shukla M (eds) Handbook of computational chemistry. Springer, Cham, pp 1–43Google Scholar
  31. 31.
    Englman R, Jortner J (1970) The energy gap law for radiationless transitions in large molecules. Mol Phys 18:145–164CrossRefGoogle Scholar
  32. 32.
    Yarkony DR (2012) Nonadiabatic quantum chemistry—past, present and future. Chem Rev 112:481–498PubMedCrossRefGoogle Scholar
  33. 33.
    Wagenknecht PS, Ford PC (2011) Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord Chem Rev 255:591–616CrossRefGoogle Scholar
  34. 34.
    Durham B, Caspar JV, Nagle JK, Meyer TJ (1982) Photochemistry of tris (2, 2′-bipyridine) Ruthenium(2+) ion. J Am Chem Soc 104:4803–4810CrossRefGoogle Scholar
  35. 35.
    Sajoto T, Djurovich PI, Tamayo AB, Oxgaard J, Goddard WA III, Thompson ME (2009) Temperature dependence of blue phosphorescent cyclometalated Ir(III) complexes. J Am Chem Soc 131:9813–9822PubMedCrossRefGoogle Scholar
  36. 36.
    Escudero D (2016) Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chem Sci 7:1262–1267PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang X, Jacquemin D, Peng Q, Shuai Z, Escudero D (2018) General approach to compute phosphorescent OLED efficiency. J Phys Chem C 122:6340–6347CrossRefGoogle Scholar
  38. 38.
    Mai S, Marquetand P, González L (2015) A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int J Quantum Chem 115:1215–1231CrossRefGoogle Scholar
  39. 39.
    Cui G, Thiel W (2014) Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 141:124101PubMedCrossRefGoogle Scholar
  40. 40.
    Crespo-Otero R, Barbatti M (2018) Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem Rev 118:7026–7068PubMedCrossRefGoogle Scholar
  41. 41.
    Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrín DA (2018) Spectroscopy in complex environments from QM–MM Simulations. Chem Rev 118:4071–4113PubMedCrossRefGoogle Scholar
  42. 42.
    Mennucci B (2012) Polarizable continuum model. WIREs Comput Mol Sci 2:386–404CrossRefGoogle Scholar
  43. 43.
    Barboza Formiga AL, Vancoillie S, Pierloot K (2013) Electronic spectra of N-heterocyclic pentacyanoferrate(II) complexes in different solvents, studied by multiconfigurational perturbation theory. Inorg Chem 52:10653–10663CrossRefGoogle Scholar
  44. 44.
    Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R, Corni S, Scalmani G (2006) Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. J Phys Chem 124:124520CrossRefGoogle Scholar
  45. 45.
    Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Phys Chem 125:054103CrossRefGoogle Scholar
  46. 46.
    Sisto A, Glowacki DR, Martinez TD (2014) Ab initio nonadiabatic dynamics of multichromophore complexes: a scalable graphical-processing-unit-accelerated exciton framework. Acc Chem Res 47:2857–2866PubMedCrossRefGoogle Scholar
  47. 47.
    Curutchet C, Muñoz-Losa A, Monti S, Kongsted J, Scholes GD, Mennucci B (2009) Electronic energy transfer in condensed phase studied by a polarizable QM/MM model. J Chem Theory Comput 5:1838–1848PubMedCrossRefGoogle Scholar
  48. 48.
    Jacob CR, Neugebauer J (2014) Subsystem density-functional theory. WIREs Comput Mol Sci 4:325–362CrossRefGoogle Scholar
  49. 49.
    Andersson K, Malmqvist PA, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218CrossRefGoogle Scholar
  50. 50.
    Malmqvist PA, Pierloot K, Shahi ARM, Cramer JC, Gagliardi L (2008) The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J Chem Phys 128:204109PubMedCrossRefGoogle Scholar
  51. 51.
    Pierloot K (2011) Transition metals compounds: outstanding challenges for multiconfigurational methods. Int J Quantum Chem 111:3291–3301CrossRefGoogle Scholar
  52. 52.
    Radoń M, Drablik G (2018) Spin states and other ligand-field states of aqua complexes revisited with multireference ab Initio calculations including solvation effects. J Chem Theory Comput 14:4010–4027PubMedCrossRefGoogle Scholar
  53. 53.
    Stein CJ, Reiher M (2016) Automated selection of active orbital spaces. J Chem Theory Comput 12:1760–1771PubMedCrossRefGoogle Scholar
  54. 54.
    Bao JJ, Dong SS, Gagliardi L, Truhlar DG (2018) Automatic selection of an active space for calculating electronic excitation spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 14:2017–2025PubMedCrossRefGoogle Scholar
  55. 55.
    Wouters S, Bogaerts T, van der Voort P, van Speybroeck V, van Neck D (2014) DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn (salen). J Chem Phys 140:241103PubMedCrossRefGoogle Scholar
  56. 56.
    Marti KH, Reiher M (2011) New electron correlation theories for transition metal chemistry. Phys Chem Chem Phys 13:6750–6759PubMedCrossRefGoogle Scholar
  57. 57.
    Chan GKL, Sharma S (2011) The density matrix renormalization group in quantum chemistry. Annu Rev Phys Chem 62:465–481PubMedCrossRefGoogle Scholar
  58. 58.
    Li Manni G, Smart SD, Alavi A (2016) Combining the complete active space self-consistent field method and the full configuration interaction quantum monte carlo within a super-CI framework, with application to challenging metal-porphyrins. J Chem Theory Comput 12:1245–1258PubMedCrossRefGoogle Scholar
  59. 59.
    Phung QM, Wouters S, Pierloot K (2016) Cumulant approximated second-order perturbation theory based on the density matrix renormalization group for transition metal complexes: a benchmark study. J Chem Theory Comput 12:4352–4361PubMedCrossRefGoogle Scholar
  60. 60.
    Freitag L, Knecht S, Angeli C, Reiher M (2017) Multireference perturbation theory with cholesky decomposition for the density matrix renormalization group. J Chem Theory Comput 13:451–459PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ziegler T, Seth M, Krykunov M, Autschbach J, Wang F (2009) On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments. J Chem Phys 130:154102PubMedCrossRefGoogle Scholar
  62. 62.
    Ziegler T (1991) Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem Rev 91:651–667CrossRefGoogle Scholar
  63. 63.
    Escudero D, Thiel W (2014) Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes. J Chem Phys 140:194105PubMedCrossRefGoogle Scholar
  64. 64.
    Latouche C, Skouteris D, Palazzetti F, Barone V (2015) TD-DFT benchmark on inorganic Pt(II) and Ir(III) complexes. J Chem Theory Comput 11:3281–3289PubMedCrossRefGoogle Scholar
  65. 65.
    Niehaus TA, Hofbeck T, Yersin H (2015) Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory? RSC Adv 5:63318–63329CrossRefGoogle Scholar
  66. 66.
    Le Bahers T, Brémond E, Ciofini I, Adamo C (2014) The nature of vertical excited states of dyes containing metals for DSSC applications: insights from TD-DFT and density based indexes. Phys Chem Chem Phys 16:14435–14444PubMedCrossRefGoogle Scholar
  67. 67.
    Fumanal M, Daniel C (2016) Description of excited states in [Re(Imidazole)(CO)3(Phen)]+ including solvent and spin-orbit coupling effects: Density functional theory versus multiconfigurational wavefunction approach. J Comput Chem 37:2454–2466PubMedCrossRefGoogle Scholar
  68. 68.
    Georgieva I, Aquino AJA, Trendafilova N, Santos PS, Lischka H (2010) Solvatochromic and ionochromic effects of Iron(II) bis(1, 10-phenanthroline) dicyano: a theoretical study. Inorg Chem 49:1634–1646PubMedCrossRefGoogle Scholar
  69. 69.
    Atkins AJ, González L (2017) Trajectory surface-hopping dynamics including intersystem crossing in [Ru(bpy)3]2+. J Phys Chem Lett 8:3840–3845PubMedCrossRefGoogle Scholar
  70. 70.
    Atkins AJ, Talotta F, Freitag L, Boggio-Pasqua M, González L (2017) Assessing excited state energy gaps with time-dependent density functional theory on Ru(II) complexes. J Chem Theory and Comput 13:4123–4145CrossRefGoogle Scholar
  71. 71.
    Gagliardi L, Truhlar DG, Li Manni G, Carlson RK, Hoyer CE, Bao JL (2017) Multiconfiguration pair-density functional theory: a new way to treat strongly correlated systems. Acc Chem Res 50:66–73PubMedCrossRefGoogle Scholar
  72. 72.
    Sharkas K, Savin A, Jensen HJA, Toulouse J (2012) A multiconfigurational hybrid density-functional theory. J Chem Phys 137:044104PubMedCrossRefGoogle Scholar
  73. 73.
    Grimme S, Waletzke M (1999) A combination of Kohn-Sham density functional theory and multi-reference configuration interaction methods. J Chem Phys 111:5645CrossRefGoogle Scholar
  74. 74.
    Lyskov I, Kleinschmidt M, Marian CM (2016) Redesign of the DFT/MRCI hamiltonian. J Chem Phys 144:034104PubMedCrossRefGoogle Scholar
  75. 75.
    Marian CM (2012) Spin–orbit coupling and intersystem crossing in molecules. WIREs Comput Mol Sci 2:187–203CrossRefGoogle Scholar
  76. 76.
    Pauli W (1927) Zur quantenmechanik des magnetischen elektrons. Z Phys 43:601–623CrossRefGoogle Scholar
  77. 77.
    Park JW, Shiozaki T (2017) Analytical derivative coupling for multistate CASPT2 theory. J Chem Theory Comput 13:2561–2570PubMedCrossRefGoogle Scholar
  78. 78.
    Sand AM, Hoyer CE, Sharkas K, Kidder KM, Lindh R, Truhlar DG, Gagliardi L (2018) Analytic gradients for complete active space pair-density functional theory. J Chem Theory Comput 14:126–138PubMedCrossRefGoogle Scholar
  79. 79.
    Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet state of phenyl cation. a hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99:95–99CrossRefGoogle Scholar
  80. 80.
    Heully JL, Alary F, Boggio-Pasqua M (2009) Spin-orbit effects on the photophysical properties of [Ru(bpy)3]2+. J Chem Phys 131:184308PubMedCrossRefGoogle Scholar
  81. 81.
    Maeda S, Ohno K, Morokuma K (2009) Automated global mapping of minimal energy points on seams of crossing by the anharmonic downward distortion following method: a case study of H2CO. J Phys Chem A 113:1704–1710PubMedCrossRefGoogle Scholar
  82. 82.
    Maeda S, Taketsugu T, Ohno K, Morokuma K (2015) From roaming atoms to hopping surfaces: mapping out global reaction routes in photochemistry. J Am Chem Soc 137:3433–3445PubMedCrossRefGoogle Scholar
  83. 83.
    Harabuchi Y, Eng J, Gindensperger E, Taketsugu T, Maeda S, Daniel C (2016) Exploring the mechanism of ultrafast intersystem crossing in rhenium(I) carbonyl bipyridine halide complexes: key vibrational modes and spin-vibronic quantum dynamics. J Chem Theory Comput 12:2335–2345PubMedCrossRefGoogle Scholar
  84. 84.
    Niu Y, Peng P, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831PubMedCrossRefGoogle Scholar
  85. 85.
    Minaev B, Baryshnikov G, Ågren H (2014) Principles of phosphorescent organic light emitting devices. Phys Chem Chem Phys 16:1719–1758PubMedCrossRefGoogle Scholar
  86. 86.
    Minaev B (1999) The singlet-triplet absorption and photodissociation of the HOCl, HOBr, and HOY molecules calculated by the MCSCF quadratic response method. J Phys Chem A 103:7294–7309CrossRefGoogle Scholar
  87. 87.
    Mori K, Goumans TPM, van Lenthe E, Wang F (2014) Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin-orbit coupling. Phys Chem Chem Phys 16:14523–14530PubMedCrossRefGoogle Scholar
  88. 88.
    Peng Q, Niu Y, Shi Q, Gao X, Shuai Z (2013) Correlation function formalism for triplet excited state decay: combined spin-orbit and nonadiabatic couplings. J Chem Theory Comput 9:1132–1143PubMedCrossRefGoogle Scholar
  89. 89.
    Etinski M, Tatchen J, Marian CM (2017) Time-dependent approaches for the calculation of intersystem crossing rates. J Chem Phys 134:154105CrossRefGoogle Scholar
  90. 90.
    Kleinschmidt M, van Wüllen C, Marian CM (2015) Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions. J Chem Phys 142:094301PubMedCrossRefGoogle Scholar
  91. 91.
    Sousa C, de Graaf C, Rudavskyi A, Broer R, Tatchen J, Etinski M, Marian CM (2013) Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe (2, 2-bipyridine)3]2+. Chem Eur J 19:17541–17551PubMedCrossRefGoogle Scholar
  92. 92.
    Beck MH, Jäckle A, Worth GA, Meyer HD (2000) The multi-configurational time-dependent hartree approach: a highly efficient algorithm for propagating wavepackets. Phys Rep 324:1–105CrossRefGoogle Scholar
  93. 93.
    Fumanal M, Gindensperger E, Daniel C (2018) Ultrafast intersystem crossing vs internal conversion in α-diimine transition metal complexes: quantum evidence. J Phys Chem Lett 9:5189–5195PubMedCrossRefGoogle Scholar
  94. 94.
    Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061–1071CrossRefGoogle Scholar
  95. 95.
    Richter M, Marquetand P, González-Vázquez J, Sola I, González L (2011) SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J Chem Theory Comput 7:1253–1258PubMedCrossRefGoogle Scholar
  96. 96.
    Mai S, Marquetand P, González L (2018) Nonadiabatic dynamics: the SHARC approach. WIREs Comput Mol Sci.  https://doi.org/10.1002/wcms.1370
  97. 97.
    Tavernelli I, Curchod B, Rothlisberger U (2011) Nonadiabatic molecular dynamics with solvent effects: a LR-TDDFT QM/MM study of Ruthenium(II) tris (Bipyridine) in water. Chem Phys 391:101–109CrossRefGoogle Scholar
  98. 98.
    Liu XY, Zhang YH, Fang WH, Cui G (2018) Early-time excited-state relaxation dynamics of iridium compounds: distinct roles of electron and hole transfer. J Phys Chem A 122:5518–5532PubMedCrossRefGoogle Scholar
  99. 99.
    Jacquemin D, Escudero D (2018) Thermal equilibration between excited states or solvent effects: unveiling the origins of anomalous emissions in heteroleptic Ru(II) complexes. Phys Chem Chem Phys 20:11559–11563PubMedCrossRefGoogle Scholar
  100. 100.
    Kamecka A, Muszynska W, Kapturkiewicz A (2017) Luminescence properties of heteroleptic [Ru(H)(CO)(N^N)(tpp)2]+ complexes: comparison with their [Os(H)(CO)(N^N)(tpp)2]+ analogues. J Lumin 192:842–852Google Scholar
  101. 101.
    Escudero D, Jacquemin D (2015) Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Trans 44:8346–8355PubMedCrossRefGoogle Scholar
  102. 102.
    El-Sayed M (1963) Spin orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations