Skip to main content

Assessing Electronically Excited States of Cobalamins via Absorption Spectroscopy and Time-Dependent Density Functional Theory

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Abstract

In the field of B\(_{12}\) chemistry, absorption spectroscopy, hand in hand with computational modeling, has played an important role in describing electronically excited states of vitamin B\(_{12}\) derivatives, also known as cobalamins. This chapter focuses on the current understanding of absorption properties of cobalamins from both spectroscopic and computational points of views. The main emphasis is on methylcobalamin (MeCbl), adenosylcobalamin (AdoCbl), and cyanocobalamin (CNCbl). In addition, we will discuss some other unique derivatives including antivitamins, non-alkyl cobalamins, as well as reduced and super-reduced forms. Due to the complexity and the size of these systems, computational analysis is almost exclusively represented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Proper DFT functional choice is paramount in predicting electronic transitions and simulating the full spectrum reliably. At this juncture in the field of B\(_{12}\) chemistry, it is indisputable that the BP86 functional is the proper choice for the assessment of the electronically excited states of cobalamins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andruniów T, Kozlowski PM (2001) Theoretical analysis of electronic absorption spectra of vitamin B\(_{12}\) models. J Chem Phys 115:7522–7533

    Article  Google Scholar 

  2. Andruniów T, Jaworska M, Lodowski P, Zgierski MZ, Dreos R, Randaccio L, Kozlowski PM (2008) Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of methylcobalamin. J Chem Phys 115(085):101

    Google Scholar 

  3. Andruniów T, Jaworska M, Lodowski P, Zgierski MZ, Dreos R, Randaccio L, Kozlowski PM (2009) Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of coenzyme B\(_{12}\). J Chem Phys 115(105):105

    Google Scholar 

  4. Banerjee R (1997) The yin-yang of cobalamin biochemistry. Chem Biol 4:175–186

    Article  CAS  Google Scholar 

  5. Banerjee R, Gherasim C, Padovani D (2009) The tinker, tailor, soldier in intracellular B\(_{12}\) trafficking. Curr Opin Chem Biol 13:484–491

    Article  CAS  Google Scholar 

  6. Bonnett R (1963) The chemistry of the vitamin B\(_{12}\) group. Chem Rev 63:573–605

    Article  Google Scholar 

  7. Brearley AE, Gott H, Hill HAO, O’Riordan M, Pratt JM, Williams RJP (1971) The chemistry of vitamin B\(_{12}\). Part XIV. Reaction of vitamin B\(_{12s}\) with nitrobenzene and its reduction products. J Chem Soc A 12:612–614

    Article  Google Scholar 

  8. Bridwell-Rabb J, Drennan CL (2017) Vitamin B\(_{12}\) in the spotlight again. Curr Opin Chem Biol 37:63–70

    Article  CAS  Google Scholar 

  9. Brown KL (2005) Chemistry and enzymology of vitamin B\(_{12}\). Chem Rev 105:2075–2150

    Article  CAS  Google Scholar 

  10. Burke K, Werschnik J, Gross EKU (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123(062):206

    Google Scholar 

  11. Casida ME (1996) Recent developments and application of modern density functional theory. Elsevier, Amsterdam

    Google Scholar 

  12. Cole AG, Yoder LM, Shiang JJ, Anderson NA, Walker LA, Holl B, M M, Sension RJ, (2002) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 5‘-deoxyadenosylcobalamin. J Am Chem Soc 124:434–441

    Google Scholar 

  13. Conrad KS, Brunold TC (2011) Spectroscopic and computational studies of glutathionylcobalamin: nature of Co-S bonding and comparison to Co-C bonding in coenzyme B\(_{12}\). Inorg Chem 54:8755–8766

    Article  Google Scholar 

  14. Day P (1967a) The electronic structure and spectrum of vitamin B\(_{12}\). Coord Chem Rev 2:99–108

    Article  Google Scholar 

  15. Day P (1967b) A theory of the optical properties of vitamin B\(_{12}\) and its derivatives. Theor Chim Acta 7:328–341

    Article  CAS  Google Scholar 

  16. Dolphin D (1982) B\(_{12}\) Volume 1: chemistry. Wiley, New York

    Google Scholar 

  17. Eckert R, Kuhn H (1960) Richtunger der übersgangmomente der absorptionsbanden von polyenen, cyaninen und vitamin b\(_{12}\) aus dichroismus und fluoreszenzpolarisation. Z Electrochem 64:356–364

    CAS  Google Scholar 

  18. Eisenberg AS, Likhtina IVZ, S V, Birke RL, (2012) Electronic spectroscopy and computational studies of glutathionylcob(III)alamin. J Phys Chem A 116:6851–6869

    Google Scholar 

  19. Finke RG (1998) Coenzyme B\(_{12}\)-based chemical precedent for Co-C bond homolysis and other key elementary step. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B\(_{12}\) and B\(_{12}\)-proteins. Wiley-VCH, Weinheim, pp 383–402

    Google Scholar 

  20. Firth RA, Hill HAO, Pratt JM, Williams RJP, Jackson WR (1967) The circular dichroism and absorption spectra of some vitamin B\(_{12}\) derivatives. Biochemistry 6:2178–2189

    Article  CAS  Google Scholar 

  21. Garabato BD, Kumar N, Lodowski P, Jaworska M, Kozlowski PM (2016) Electronically excited states of cob(II)alamin: Insights from CASSCF/XMCQDPT2 and TD-DFT calculations. Phys Chem Chem Phys 18:4513–4526

    Google Scholar 

  22. Garabato BD, Lodowski P, Jaworska M, Kozlowski PM (2016) Mechanism of Co-C photodissociation in adenosylcobalamin. Phys Chem Chem Phys 18:19,070–19,082

    Google Scholar 

  23. Ghosh AP, Mamun AA, Lodowski P, Jaworska M, Kozlowski PM (2018) Mechanism of the photo-induced activation of Co-C bond in methylcobalamin dependent methionine synthase. J Photochem Photobiol B: Biol 18:306–317

    Google Scholar 

  24. Giannotti C (1982) Electronic spectra of B\(_{12}\) and related systems. In: Dolphin D (ed) B\(_{12}\) volume: chemistry. Wiley, New York, pp 393–430

    Google Scholar 

  25. Giedyk M, Goliszewska K, Gryko D (2015) Vitamin B\(_{12}\) catalysed reactions. Chem Soc Rev 44:3391–3404

    Article  CAS  Google Scholar 

  26. Harris DA, Stickrath AB, Carroll EC, Sension RJ (2007) Influence of environment on the electronic structure of cob(III)alamins: time-resolved absorption studies of the S\(_{1}\) state spectrum and dynamics. J Am Chem Soc 129:7578–7585

    Article  CAS  Google Scholar 

  27. Hay BP, Finke RG (1988) Thermolysis of the Co-C bond in adenosylcobalamin (coenzyme B\(_{12}\) - IV. Products, kinetics, and Co-C bond dissociation energy studies in ethylene glycol. Polyhedron 7:1469–1481

    Article  CAS  Google Scholar 

  28. Hirao H (2011) Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the BLYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J Phys Chem A 115:9308–9313

    Article  CAS  Google Scholar 

  29. Huix-Rotllant M, Filatov M, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 9:3917–3922

    Article  CAS  Google Scholar 

  30. Hung RR, Grabowski JJ (1999) Listening to reactive intermediates: application of photoacoustic calorimetry to vitamin B\(_{12}\) compounds. J Am Chem Soc 115:1359–1364

    Article  Google Scholar 

  31. Jaworska M, Lodowski P (2003) Electronic spectrum of Co-corrin calculated with the TDDFT method. Mol Struct (THEOCHEM) 631:209–223

    Article  CAS  Google Scholar 

  32. Jaworska M, Kazibut G, Lodowski P (2003) Electronic spectrum of cobalt-free corrins calculated by TDDFT method. J Phys Chem A 107:1339–1347

    Article  CAS  Google Scholar 

  33. Jensen KP (2005) Electronic structure of cob(I)alamin: the story of an unusual nucleophile. J Phys Chem B 109:10,505–10,512

    Google Scholar 

  34. Jensen KP, Ryde U (2003) Theoretical prediction of the Co-C bond strength in cobalamins. J Phys Chem A 107:7539–7545

    Article  CAS  Google Scholar 

  35. Jones AR (2017) The photochemistry and photobiology of vitamin B\(_{12}\). Photochem Photobiol Sci 16:820–834

    Article  CAS  Google Scholar 

  36. Kepp KP (2014) Co-C dissociation of adenosylcobalamin (coenzyme B\(_{12}\)): role of dispersion, induction effects, solvent polarity, and relativistic and thermal corrections. J Phys Chem A 118:7104–7117

    Article  CAS  Google Scholar 

  37. Kobylianskii IJ, Widner FJ, Kräutler B, Chen P (2013) Co-C bond energies in adenosylcobinamide and methylcobinamide in the gas phase and in silico. J Am Chem Soc 135:13,648–13,651

    Google Scholar 

  38. Kornobis K, Kumar N, Wong BM, Lodowski P, Jaworska M, Andruniów T, Ruud K, Kozlowski PM (2011) Electronically excited states of vitamin B\(_{12}\): benchmark calculations including time-dependent density functional theory and correlated ab initio methods. J Phys Chem A 115:1280–1292

    Article  CAS  Google Scholar 

  39. Kornobis K, Kumar N, Lodowski P, Jaworska M, Piecuch P, Lutz JJ, Wong BM, Kozlowski PM (2013) Electronic structure of the S\(_{1}\) state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations. J Comp Chem 34:987–1004

    Google Scholar 

  40. Kornobis K, Ruud K, Kozlowski PM (2013) Cob(I)alamin: Insight into the nature of electronically excited states elucidated via quantum chemical computations and analysis of absorption, CD and MCD data. J Phys Chem A 117:863–876

    Google Scholar 

  41. Kozlowski PM, Kumar M, Piecuch P, Li W, Bauman NP, Hansen JA, Lodowski P, Jaworska M (2012) The cobalt-methyl bond dissociation in methylcobalamin: new benchmark analysis based on density functional theory and completely renormalized coupled-cluster calculations. J Chem Theory Comput 8:1870–1894

    Article  CAS  Google Scholar 

  42. Kozlowski PM, Garabato BD, Lodowski P, Jaworska M (2016) Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 45:4457–4470

    Article  CAS  Google Scholar 

  43. Kuhn H, Drexhage KH, Martin H (1965) The light absorption of vitamin B\(_{12}\). Proc Roy Soc A 288(288):348–350

    Google Scholar 

  44. Kumar M, Kozlowski PM (2017) Electronic and structural properties of cob(I)alamin: ramifications for B\(_{12}\)-dependent processes. Coord Chem Rev 333:71–81

    Article  CAS  Google Scholar 

  45. Kuta J, Patchkovskii S, Zgierski MZ, Kozlowski PM (2006) Performance of DFT in modeling electronic and structural properties of cobalamins. J Comput Chem 27:1429–1437

    Article  CAS  Google Scholar 

  46. Kuta J, Wuerges J, Randaccio L, Kozlowski PM (2009) Axial bonding in alkylcobalamins: DFT analysis of the inverse versus normal trans influence. J Phys Chem A 113:11,604–11,612

    Google Scholar 

  47. Kutta RJ, Hardman SJ, Johannissen LO, Bellina B, Messiha HL, Ortiz-Guerrero JM, Elias-Arnanz M, Padmanabhan S, Barran P, Scrutton NS, Jones AR (2015) The photochemical mechanism of a B\(_{12}\)-dependent photoreceptor protein. Nat Commun 6:7907

    Article  CAS  Google Scholar 

  48. Lewis NJ, Pfaltz A, Eschenmoser A (1983) Acid-catalyzed demetalation of nickel-hydrocorphin and cobalt-corrin complexes with 1,3-propoanedithiol. Angew Chem Int Ed 22:735–736

    Article  Google Scholar 

  49. Liptak MD, Brunold TC (2006) Spectroscopic and computational studies of Co\(^{1+}\) cobalamin: spectral and electronic properties of the “superreduced” B\(_{12}\) cofactor. J Am Chem Soc 128:9144–9156

    Article  CAS  Google Scholar 

  50. Liu H, Kornobis K, Lodowski P, Jaworska M, Kozlowski PM (2014) TD-DFT insight into photodissociation of the Co-C bond in coenzyme B\(_{12}\). Front Chem 1:1–12

    Article  Google Scholar 

  51. Lodowski P, Jaworska M, Andruniów T, Kumar M, Kozlowski PM (2009) Photodissociation of Co-C bond in methyl- and methylcobalamin: an insight from TD-DFT calculations. J Phys Chem B 113:6898–6909

    Article  CAS  Google Scholar 

  52. Lodowski P, Jaworska M, Kornobis K, Andruniów T, Kozlowski PM (2011) Electronic and structural properties of low-lying excited states of vitamin B\(_{12}\). J Phys Chem B 115:13,304–13,319

    Google Scholar 

  53. Lodowski P, Jaworska M, Andruniów T, Garabato BD, Kozlowski PM (2014) Mechanism of the S\(_{1}\) excited state internal conversion in vitamin B\(_{12}\). Phys Chem Chem Phys 16:18,675–18,679

    Google Scholar 

  54. Lodowski P, Ciura K, Toda MJ, Jaworska M, Kozlowski PM (2017) Photodissociation of ethylphenylcobalamin antivitamin B\(_{12}\). Phys Chem Chem Phys 19:30,310–30,315

    Google Scholar 

  55. Luo LB, Li G, Chen HL, Fu SW, Zhang SY (1998) Laser-induced photoacoustic calorimetric determination of enthalpy and volume changes in photolysis of 5’-deoxyadenosylcobalamin and methylcobalamin. J Chem Soc Dalton Trans pp 2103–2107

    Google Scholar 

  56. Mamun AA, Toda MJ, Lodowski P, Jaworska M, Kozlowski PM (2018) Mechanism of light induced radical pair formation in coenzyme B\(_{12}\)-dependent ethanolamine ammonia-lyase. ACS Catalysis 8:7164–7178

    Article  CAS  Google Scholar 

  57. Marsh EN, Melendez GD (2012) Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim Biophys Acta 1824:1154–1164

    Article  CAS  Google Scholar 

  58. Martin BD, Finke RG (1990) Co-C homolysis and bond-dissociation energy studies of biological alkylcobalamins: methylcobalamin, including a \(\ge \)10\(^{15}\) Co-CH\(_{3}\) homolysis rate enhancement at 25\(^{\circ }\)c following one-electron reduction. J Am Chem Soc 112:2419–2420

    Article  CAS  Google Scholar 

  59. Martin BD, Finke RG (1992) Methylcobalamins full-strength vs half-strenght cobalt-carbon sigma-bonds and bond-dissociation enthalpies \(\ge \)10\(^{15}\) Co-CH\(_{3}\) homolysis rate enhancement following one-antibonding-electron reduction of methylcobalamin. J Am Chem Soc 114:585–592

    Article  CAS  Google Scholar 

  60. Miller NA, Wiley TE, Spears KG, Ruetz M, Kieninger C, Krautler B, Sension RJ (2016) Toward the design of photoresponsive conditional antivitamins B\(_{12}\): a transient absorption study of an arylcobalamin and an alkynylcobalamin. J Am Chem Soc 138:14,250–14,256

    Google Scholar 

  61. Miller NA, Deb A, Alonso-Mori R, Garabato BD, Glownia JM, Kiefer LM, Koralek J, Sikorski M, Spears KG, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ (2017) Polarized XANES monitors femtosecond structural evolution of photoexcited vitamin B\(_{12}\). J Am Chem Soc 139:1894–1899

    Article  CAS  Google Scholar 

  62. Mutti E, Ruetz M, Birn H, Krütler B, Nexo E (2013) 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B\(_{12}\) and causes vitamin B\(_{12}\) deficiency in mice. PLOS ONE 8(e75):312

    Google Scholar 

  63. Offenhartz PO, Offenhartz BH, Fung MM (1970) Theoretical analysis of corrin optical spectra. J Am Chem Soc 92:2966–2973

    Article  CAS  Google Scholar 

  64. Park K, Brunold TC (2013) Combined spectroscopic and computational analysis of the vibrational properties of vitamin B\(_{12}\) in its Co\(^{3+}\), Co\(^{2+}\), and Co\(^{1+}\) oxidation states. J Phys Chem B 117:5397–5410

    Article  CAS  Google Scholar 

  65. Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128(044):118

    Google Scholar 

  66. Perry CB, Marques HM (2005) Probing the cis and trans influrence in cobalamin chemistry by electronic spectroscopy. S Afr J Chem 58:9–15

    CAS  Google Scholar 

  67. Pratt JM (1972) Inorganic chemistry of vitamin B\(_{12}\). Academic Press, London

    Google Scholar 

  68. Pratt JM (1999) Electronic structure and spectra of B\(_{12}\): from trans effects to protein conformation I and II. In: Banerjee R (ed) Chemistry and biochemistry of B\(_{12}\). Wiley, New York, pp 113–164

    Google Scholar 

  69. Ragsdale SW (2006) Metals and their scaffolds to promote difficult enzymatic reactions. Chem Rev 106:3317–3337

    Article  CAS  Google Scholar 

  70. Robertson WD, Wang M, Warncke K (2011) Characterization of protein contributions to cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase by using photolysis in the ternary complex. J Am Chem Soc 133:6968–77

    Article  CAS  Google Scholar 

  71. Roman-Melendez GD, von Glehn P, Harvey JN, Mulholland AJ, Marsh ENL (2014) Role of active site residues in promoting cobalt-carbon bond homolysis in adenosylcobalamin-dependent mutases revealed through experiment and computation. Biochemistry 53:169–77

    Article  CAS  Google Scholar 

  72. Ruetz M, Gherasim C, Gruber K, Fedosov S, Banerjee R, Kräutler B (2013) Access to organometallic arylcobaltcorrins through radical synthesis: 4-ethylphenylcobalamin, a potential “antivitamin B\(_{12}\)”. Angew Chem Int Ed 52:2606–2610

    Google Scholar 

  73. Ruetz M, Salchner R, Wurst K, Fedosov S, Kräutler B (2013) Phenylethynylcobalamin: a lightstable and thermolysisresistant organometallic vitamin B\(_{12}\) derivative prepared by radical synthesis. Angew Chem Int Ed 52:11,406–11,409

    Google Scholar 

  74. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  75. Rury AS, Wiley TE, Sension RJ (2015) Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc Chem Res 48:860–867

    Article  CAS  Google Scholar 

  76. Ryde U, Mata RA, Grimme S (2011) Does DFT-D estimate accurate energies for the binding of ligands to metal complexes? Datlon Trans 40:11,176–11,183

    Google Scholar 

  77. Sandala GM, Smith DM, Radom L (2010) Modeling the reactions catalyzed by coenzyme B\(_{12}\)-dependent enzymes. Acc Chem Res 43:642–651

    Article  CAS  Google Scholar 

  78. Sension RJ, Harris DA, Cole AG (2005a) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: Comparison of the influence of solvent on the primary photolysis mechanism and geminate recombination of methyl-, ethyl-, n-propyl, and 5’-deoxyadenosylcobalamin. J Phys Chem B 109:21,954–21,962

    Google Scholar 

  79. Sension RJ, Harris DA, Stickrath A, Cole AG, Fox CC, Marsh EN (2005b) Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase. J Phys Chem B 109:18,146–18,152

    Google Scholar 

  80. Shell TA, Lawrence DS (2015) Vitamin B\(_{12}\): a tunable, long wavelength, light-responsive platform for launching therapeutic agents. Acc Chem Res 48:2866–2874

    Article  CAS  Google Scholar 

  81. Shell TA, Shell JR, Rodgers ZL, Lawrence DS (2014) Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas. Angew Chem Int Ed 53:875–878

    Article  CAS  Google Scholar 

  82. Shiang JJ, Walker LA, Anderson NA, Cole AG, Sension RJ (1999) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: The photolysis of methylcobalamin is wavelength dependent. J Phys Chem B 103:10,532–10,539

    Google Scholar 

  83. Shiang JJ, Cole AG, Sension RJ, Hang K, Weng Y, Trommel JS, Marzilli LG, Lian T (2006) Ultrafast excited-state dynamics in vitamin B\(_{12}\) and related cob(III)alamins. J Am Chem Soc 128:801–808

    Article  CAS  Google Scholar 

  84. Solheim H, Kornobis K, Ruud K, Kozlowski PM (2011) Electronically excited states of vitamin B\(_{12}\) and methylcobalamin: theoretical analysis of absorption, CD, and MCD data. J Phys Chem B 115:737–748

    Article  CAS  Google Scholar 

  85. Stich TA, Brooks AJ, Buan NR, Brunold TC (2003) Spectroscopic and computational studies of Co\(^{3+}\)-corrinoids: spectral and electronic properties of the B\(_{12}\) cofactors and biologically relevant precursors. J Am Chem Soc 125:5897–5914

    Article  CAS  Google Scholar 

  86. Stich TA, Buan NR, Brunold TC (2004) Spectroscopic and computational studies of Co\(^{2+}\)-corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co\(^{2+}\)cobalamin. J Am Chem Soc 126:9735–9749

    Article  CAS  Google Scholar 

  87. Stickrath AB, Carroll EC, Dai X, Harris DA, Rury A, Smith B, Kc Tang, Wert J, Sension RJ (2009) Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate receombinations of alkylcobalamins. J Phys Chem A 113:8513–8522

    Article  CAS  Google Scholar 

  88. Toohey JIA (1965) Vitamin B\(_{12}\) compound containing no cobalt. Proc Natl Acad Sci USA 54:934–942

    Article  CAS  Google Scholar 

  89. Toraya T (2003) Radical catalysis in coenzyme B\(_{12}\)-dependent isomerization (eliminating) reactions. Chem Rev 103:2095–2128

    Article  CAS  Google Scholar 

  90. Waibel R, Treichler H, Schaefer NG, van Staveren DR, Mundwiler S, Kunze S, Kuenzi M, Alberto R, Nuesch J, Knuth A, Moch H, Schibli R, Schubiger PA (2008) New derivatives of vitamin B\(_{12}\) show preferential targeting of tumors. Cancer Res 68:2904–2911

    Article  CAS  Google Scholar 

  91. Walker LA, Jarrett JT, Anderson NA, Pullen SH, Matthews RG, Sension RJ (1998) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: the identification of a metastable cob(III)alamin photoproduct in the photolysis of methylcobalamin. J Am Chem Soc 120:3597–3603

    Article  CAS  Google Scholar 

  92. Wiley TE, Arruda BC, Miller NA, Lenard M, Sension RJ (2015) Excited electronic states and internal conversion in cyanocobalamin. Chin Chem Lett 26:439–443

    Article  CAS  Google Scholar 

  93. Wiley TE, Miller WR, Miller NA, Sension RJ, Lodowski P, Jaworska M, Kozlowski PM (2016) Photostability of hydroxocobalamin: ultrafast excited state dynamics and computational studies. J Phys Chem Lett 7:143–7

    Article  CAS  Google Scholar 

  94. Yoder LM, Cole AG, Walker LA, Sension RJ (2001) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: influence of solvent on the photolysis of adenosylcobalamin. J Phys Chem B 105:12,180–12,188

    Google Scholar 

  95. Zelder F, Zhou K, Sonnay M (2013) Peptide B\({12}\): emerging trends at the interface of inorganic chemistry, chemical biology and medicine. Dalton Trans 42:854–862

    Article  CAS  Google Scholar 

  96. Zelder F, Sonnay M, Prieto L (2015) Antivitamins for medicinal applications. Chem Bio Chem 16:1264–1278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Megan J. Toda or Tadeusz Andruniów .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toda, M.J., Kozlowski, P.M., Andruniów, T. (2019). Assessing Electronically Excited States of Cobalamins via Absorption Spectroscopy and Time-Dependent Density Functional Theory. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_8

Download citation

Publish with us

Policies and ethics