Assessing Electronically Excited States of Cobalamins via Absorption Spectroscopy and Time-Dependent Density Functional Theory

  • Megan J. TodaEmail author
  • Pawel M. Kozlowski
  • Tadeusz AndruniówEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


In the field of B\(_{12}\) chemistry, absorption spectroscopy, hand in hand with computational modeling, has played an important role in describing electronically excited states of vitamin B\(_{12}\) derivatives, also known as cobalamins. This chapter focuses on the current understanding of absorption properties of cobalamins from both spectroscopic and computational points of views. The main emphasis is on methylcobalamin (MeCbl), adenosylcobalamin (AdoCbl), and cyanocobalamin (CNCbl). In addition, we will discuss some other unique derivatives including antivitamins, non-alkyl cobalamins, as well as reduced and super-reduced forms. Due to the complexity and the size of these systems, computational analysis is almost exclusively represented by density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Proper DFT functional choice is paramount in predicting electronic transitions and simulating the full spectrum reliably. At this juncture in the field of B\(_{12}\) chemistry, it is indisputable that the BP86 functional is the proper choice for the assessment of the electronically excited states of cobalamins.


Vitamin B\(_{12}\) Photolysis Transient absorption spectroscopy B\(_{12}\)-dependent enzymes Co–C bond dissociation energy 


  1. 1.
    Andruniów T, Kozlowski PM (2001) Theoretical analysis of electronic absorption spectra of vitamin B\(_{12}\) models. J Chem Phys 115:7522–7533CrossRefGoogle Scholar
  2. 2.
    Andruniów T, Jaworska M, Lodowski P, Zgierski MZ, Dreos R, Randaccio L, Kozlowski PM (2008) Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of methylcobalamin. J Chem Phys 115(085):101Google Scholar
  3. 3.
    Andruniów T, Jaworska M, Lodowski P, Zgierski MZ, Dreos R, Randaccio L, Kozlowski PM (2009) Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of coenzyme B\(_{12}\). J Chem Phys 115(105):105Google Scholar
  4. 4.
    Banerjee R (1997) The yin-yang of cobalamin biochemistry. Chem Biol 4:175–186CrossRefGoogle Scholar
  5. 5.
    Banerjee R, Gherasim C, Padovani D (2009) The tinker, tailor, soldier in intracellular B\(_{12}\) trafficking. Curr Opin Chem Biol 13:484–491CrossRefGoogle Scholar
  6. 6.
    Bonnett R (1963) The chemistry of the vitamin B\(_{12}\) group. Chem Rev 63:573–605CrossRefGoogle Scholar
  7. 7.
    Brearley AE, Gott H, Hill HAO, O’Riordan M, Pratt JM, Williams RJP (1971) The chemistry of vitamin B\(_{12}\). Part XIV. Reaction of vitamin B\(_{12s}\) with nitrobenzene and its reduction products. J Chem Soc A 12:612–614CrossRefGoogle Scholar
  8. 8.
    Bridwell-Rabb J, Drennan CL (2017) Vitamin B\(_{12}\) in the spotlight again. Curr Opin Chem Biol 37:63–70CrossRefGoogle Scholar
  9. 9.
    Brown KL (2005) Chemistry and enzymology of vitamin B\(_{12}\). Chem Rev 105:2075–2150CrossRefGoogle Scholar
  10. 10.
    Burke K, Werschnik J, Gross EKU (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123(062):206Google Scholar
  11. 11.
    Casida ME (1996) Recent developments and application of modern density functional theory. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Cole AG, Yoder LM, Shiang JJ, Anderson NA, Walker LA, Holl B, M M, Sension RJ, (2002) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 5‘-deoxyadenosylcobalamin. J Am Chem Soc 124:434–441Google Scholar
  13. 13.
    Conrad KS, Brunold TC (2011) Spectroscopic and computational studies of glutathionylcobalamin: nature of Co-S bonding and comparison to Co-C bonding in coenzyme B\(_{12}\). Inorg Chem 54:8755–8766CrossRefGoogle Scholar
  14. 14.
    Day P (1967a) The electronic structure and spectrum of vitamin B\(_{12}\). Coord Chem Rev 2:99–108CrossRefGoogle Scholar
  15. 15.
    Day P (1967b) A theory of the optical properties of vitamin B\(_{12}\) and its derivatives. Theor Chim Acta 7:328–341CrossRefGoogle Scholar
  16. 16.
    Dolphin D (1982) B\(_{12}\) Volume 1: chemistry. Wiley, New YorkGoogle Scholar
  17. 17.
    Eckert R, Kuhn H (1960) Richtunger der übersgangmomente der absorptionsbanden von polyenen, cyaninen und vitamin b\(_{12}\) aus dichroismus und fluoreszenzpolarisation. Z Electrochem 64:356–364Google Scholar
  18. 18.
    Eisenberg AS, Likhtina IVZ, S V, Birke RL, (2012) Electronic spectroscopy and computational studies of glutathionylcob(III)alamin. J Phys Chem A 116:6851–6869Google Scholar
  19. 19.
    Finke RG (1998) Coenzyme B\(_{12}\)-based chemical precedent for Co-C bond homolysis and other key elementary step. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B\(_{12}\) and B\(_{12}\)-proteins. Wiley-VCH, Weinheim, pp 383–402Google Scholar
  20. 20.
    Firth RA, Hill HAO, Pratt JM, Williams RJP, Jackson WR (1967) The circular dichroism and absorption spectra of some vitamin B\(_{12}\) derivatives. Biochemistry 6:2178–2189CrossRefGoogle Scholar
  21. 21.
    Garabato BD, Kumar N, Lodowski P, Jaworska M, Kozlowski PM (2016) Electronically excited states of cob(II)alamin: Insights from CASSCF/XMCQDPT2 and TD-DFT calculations. Phys Chem Chem Phys 18:4513–4526Google Scholar
  22. 22.
    Garabato BD, Lodowski P, Jaworska M, Kozlowski PM (2016) Mechanism of Co-C photodissociation in adenosylcobalamin. Phys Chem Chem Phys 18:19,070–19,082Google Scholar
  23. 23.
    Ghosh AP, Mamun AA, Lodowski P, Jaworska M, Kozlowski PM (2018) Mechanism of the photo-induced activation of Co-C bond in methylcobalamin dependent methionine synthase. J Photochem Photobiol B: Biol 18:306–317Google Scholar
  24. 24.
    Giannotti C (1982) Electronic spectra of B\(_{12}\) and related systems. In: Dolphin D (ed) B\(_{12}\) volume: chemistry. Wiley, New York, pp 393–430Google Scholar
  25. 25.
    Giedyk M, Goliszewska K, Gryko D (2015) Vitamin B\(_{12}\) catalysed reactions. Chem Soc Rev 44:3391–3404CrossRefGoogle Scholar
  26. 26.
    Harris DA, Stickrath AB, Carroll EC, Sension RJ (2007) Influence of environment on the electronic structure of cob(III)alamins: time-resolved absorption studies of the S\(_{1}\) state spectrum and dynamics. J Am Chem Soc 129:7578–7585CrossRefGoogle Scholar
  27. 27.
    Hay BP, Finke RG (1988) Thermolysis of the Co-C bond in adenosylcobalamin (coenzyme B\(_{12}\) - IV. Products, kinetics, and Co-C bond dissociation energy studies in ethylene glycol. Polyhedron 7:1469–1481CrossRefGoogle Scholar
  28. 28.
    Hirao H (2011) Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the BLYP and BP86 functionals and evaluation of the impact of empirical dispersion correction. J Phys Chem A 115:9308–9313CrossRefGoogle Scholar
  29. 29.
    Huix-Rotllant M, Filatov M, Gozem S, Schapiro I, Olivucci M, Ferré N (2013) Assessment of density functional theory for describing the correlation effects on the ground and excited state potential energy surfaces of a retinal chromophore model. J Chem Theory Comput 9:3917–3922CrossRefGoogle Scholar
  30. 30.
    Hung RR, Grabowski JJ (1999) Listening to reactive intermediates: application of photoacoustic calorimetry to vitamin B\(_{12}\) compounds. J Am Chem Soc 115:1359–1364CrossRefGoogle Scholar
  31. 31.
    Jaworska M, Lodowski P (2003) Electronic spectrum of Co-corrin calculated with the TDDFT method. Mol Struct (THEOCHEM) 631:209–223CrossRefGoogle Scholar
  32. 32.
    Jaworska M, Kazibut G, Lodowski P (2003) Electronic spectrum of cobalt-free corrins calculated by TDDFT method. J Phys Chem A 107:1339–1347CrossRefGoogle Scholar
  33. 33.
    Jensen KP (2005) Electronic structure of cob(I)alamin: the story of an unusual nucleophile. J Phys Chem B 109:10,505–10,512Google Scholar
  34. 34.
    Jensen KP, Ryde U (2003) Theoretical prediction of the Co-C bond strength in cobalamins. J Phys Chem A 107:7539–7545CrossRefGoogle Scholar
  35. 35.
    Jones AR (2017) The photochemistry and photobiology of vitamin B\(_{12}\). Photochem Photobiol Sci 16:820–834CrossRefGoogle Scholar
  36. 36.
    Kepp KP (2014) Co-C dissociation of adenosylcobalamin (coenzyme B\(_{12}\)): role of dispersion, induction effects, solvent polarity, and relativistic and thermal corrections. J Phys Chem A 118:7104–7117CrossRefGoogle Scholar
  37. 37.
    Kobylianskii IJ, Widner FJ, Kräutler B, Chen P (2013) Co-C bond energies in adenosylcobinamide and methylcobinamide in the gas phase and in silico. J Am Chem Soc 135:13,648–13,651Google Scholar
  38. 38.
    Kornobis K, Kumar N, Wong BM, Lodowski P, Jaworska M, Andruniów T, Ruud K, Kozlowski PM (2011) Electronically excited states of vitamin B\(_{12}\): benchmark calculations including time-dependent density functional theory and correlated ab initio methods. J Phys Chem A 115:1280–1292CrossRefGoogle Scholar
  39. 39.
    Kornobis K, Kumar N, Lodowski P, Jaworska M, Piecuch P, Lutz JJ, Wong BM, Kozlowski PM (2013) Electronic structure of the S\(_{1}\) state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations. J Comp Chem 34:987–1004Google Scholar
  40. 40.
    Kornobis K, Ruud K, Kozlowski PM (2013) Cob(I)alamin: Insight into the nature of electronically excited states elucidated via quantum chemical computations and analysis of absorption, CD and MCD data. J Phys Chem A 117:863–876Google Scholar
  41. 41.
    Kozlowski PM, Kumar M, Piecuch P, Li W, Bauman NP, Hansen JA, Lodowski P, Jaworska M (2012) The cobalt-methyl bond dissociation in methylcobalamin: new benchmark analysis based on density functional theory and completely renormalized coupled-cluster calculations. J Chem Theory Comput 8:1870–1894CrossRefGoogle Scholar
  42. 42.
    Kozlowski PM, Garabato BD, Lodowski P, Jaworska M (2016) Photolytic properties of cobalamins: a theoretical perspective. Dalton Trans 45:4457–4470CrossRefGoogle Scholar
  43. 43.
    Kuhn H, Drexhage KH, Martin H (1965) The light absorption of vitamin B\(_{12}\). Proc Roy Soc A 288(288):348–350Google Scholar
  44. 44.
    Kumar M, Kozlowski PM (2017) Electronic and structural properties of cob(I)alamin: ramifications for B\(_{12}\)-dependent processes. Coord Chem Rev 333:71–81CrossRefGoogle Scholar
  45. 45.
    Kuta J, Patchkovskii S, Zgierski MZ, Kozlowski PM (2006) Performance of DFT in modeling electronic and structural properties of cobalamins. J Comput Chem 27:1429–1437CrossRefGoogle Scholar
  46. 46.
    Kuta J, Wuerges J, Randaccio L, Kozlowski PM (2009) Axial bonding in alkylcobalamins: DFT analysis of the inverse versus normal trans influence. J Phys Chem A 113:11,604–11,612Google Scholar
  47. 47.
    Kutta RJ, Hardman SJ, Johannissen LO, Bellina B, Messiha HL, Ortiz-Guerrero JM, Elias-Arnanz M, Padmanabhan S, Barran P, Scrutton NS, Jones AR (2015) The photochemical mechanism of a B\(_{12}\)-dependent photoreceptor protein. Nat Commun 6:7907CrossRefGoogle Scholar
  48. 48.
    Lewis NJ, Pfaltz A, Eschenmoser A (1983) Acid-catalyzed demetalation of nickel-hydrocorphin and cobalt-corrin complexes with 1,3-propoanedithiol. Angew Chem Int Ed 22:735–736CrossRefGoogle Scholar
  49. 49.
    Liptak MD, Brunold TC (2006) Spectroscopic and computational studies of Co\(^{1+}\) cobalamin: spectral and electronic properties of the “superreduced” B\(_{12}\) cofactor. J Am Chem Soc 128:9144–9156CrossRefGoogle Scholar
  50. 50.
    Liu H, Kornobis K, Lodowski P, Jaworska M, Kozlowski PM (2014) TD-DFT insight into photodissociation of the Co-C bond in coenzyme B\(_{12}\). Front Chem 1:1–12CrossRefGoogle Scholar
  51. 51.
    Lodowski P, Jaworska M, Andruniów T, Kumar M, Kozlowski PM (2009) Photodissociation of Co-C bond in methyl- and methylcobalamin: an insight from TD-DFT calculations. J Phys Chem B 113:6898–6909CrossRefGoogle Scholar
  52. 52.
    Lodowski P, Jaworska M, Kornobis K, Andruniów T, Kozlowski PM (2011) Electronic and structural properties of low-lying excited states of vitamin B\(_{12}\). J Phys Chem B 115:13,304–13,319Google Scholar
  53. 53.
    Lodowski P, Jaworska M, Andruniów T, Garabato BD, Kozlowski PM (2014) Mechanism of the S\(_{1}\) excited state internal conversion in vitamin B\(_{12}\). Phys Chem Chem Phys 16:18,675–18,679Google Scholar
  54. 54.
    Lodowski P, Ciura K, Toda MJ, Jaworska M, Kozlowski PM (2017) Photodissociation of ethylphenylcobalamin antivitamin B\(_{12}\). Phys Chem Chem Phys 19:30,310–30,315Google Scholar
  55. 55.
    Luo LB, Li G, Chen HL, Fu SW, Zhang SY (1998) Laser-induced photoacoustic calorimetric determination of enthalpy and volume changes in photolysis of 5’-deoxyadenosylcobalamin and methylcobalamin. J Chem Soc Dalton Trans pp 2103–2107Google Scholar
  56. 56.
    Mamun AA, Toda MJ, Lodowski P, Jaworska M, Kozlowski PM (2018) Mechanism of light induced radical pair formation in coenzyme B\(_{12}\)-dependent ethanolamine ammonia-lyase. ACS Catalysis 8:7164–7178CrossRefGoogle Scholar
  57. 57.
    Marsh EN, Melendez GD (2012) Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim Biophys Acta 1824:1154–1164CrossRefGoogle Scholar
  58. 58.
    Martin BD, Finke RG (1990) Co-C homolysis and bond-dissociation energy studies of biological alkylcobalamins: methylcobalamin, including a \(\ge \)10\(^{15}\) Co-CH\(_{3}\) homolysis rate enhancement at 25\(^{\circ }\)c following one-electron reduction. J Am Chem Soc 112:2419–2420CrossRefGoogle Scholar
  59. 59.
    Martin BD, Finke RG (1992) Methylcobalamins full-strength vs half-strenght cobalt-carbon sigma-bonds and bond-dissociation enthalpies \(\ge \)10\(^{15}\) Co-CH\(_{3}\) homolysis rate enhancement following one-antibonding-electron reduction of methylcobalamin. J Am Chem Soc 114:585–592CrossRefGoogle Scholar
  60. 60.
    Miller NA, Wiley TE, Spears KG, Ruetz M, Kieninger C, Krautler B, Sension RJ (2016) Toward the design of photoresponsive conditional antivitamins B\(_{12}\): a transient absorption study of an arylcobalamin and an alkynylcobalamin. J Am Chem Soc 138:14,250–14,256Google Scholar
  61. 61.
    Miller NA, Deb A, Alonso-Mori R, Garabato BD, Glownia JM, Kiefer LM, Koralek J, Sikorski M, Spears KG, Wiley TE, Zhu D, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ (2017) Polarized XANES monitors femtosecond structural evolution of photoexcited vitamin B\(_{12}\). J Am Chem Soc 139:1894–1899CrossRefGoogle Scholar
  62. 62.
    Mutti E, Ruetz M, Birn H, Krütler B, Nexo E (2013) 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B\(_{12}\) and causes vitamin B\(_{12}\) deficiency in mice. PLOS ONE 8(e75):312Google Scholar
  63. 63.
    Offenhartz PO, Offenhartz BH, Fung MM (1970) Theoretical analysis of corrin optical spectra. J Am Chem Soc 92:2966–2973CrossRefGoogle Scholar
  64. 64.
    Park K, Brunold TC (2013) Combined spectroscopic and computational analysis of the vibrational properties of vitamin B\(_{12}\) in its Co\(^{3+}\), Co\(^{2+}\), and Co\(^{1+}\) oxidation states. J Phys Chem B 117:5397–5410CrossRefGoogle Scholar
  65. 65.
    Peach MJ, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128(044):118Google Scholar
  66. 66.
    Perry CB, Marques HM (2005) Probing the cis and trans influrence in cobalamin chemistry by electronic spectroscopy. S Afr J Chem 58:9–15Google Scholar
  67. 67.
    Pratt JM (1972) Inorganic chemistry of vitamin B\(_{12}\). Academic Press, LondonGoogle Scholar
  68. 68.
    Pratt JM (1999) Electronic structure and spectra of B\(_{12}\): from trans effects to protein conformation I and II. In: Banerjee R (ed) Chemistry and biochemistry of B\(_{12}\). Wiley, New York, pp 113–164Google Scholar
  69. 69.
    Ragsdale SW (2006) Metals and their scaffolds to promote difficult enzymatic reactions. Chem Rev 106:3317–3337CrossRefGoogle Scholar
  70. 70.
    Robertson WD, Wang M, Warncke K (2011) Characterization of protein contributions to cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase by using photolysis in the ternary complex. J Am Chem Soc 133:6968–77CrossRefGoogle Scholar
  71. 71.
    Roman-Melendez GD, von Glehn P, Harvey JN, Mulholland AJ, Marsh ENL (2014) Role of active site residues in promoting cobalt-carbon bond homolysis in adenosylcobalamin-dependent mutases revealed through experiment and computation. Biochemistry 53:169–77CrossRefGoogle Scholar
  72. 72.
    Ruetz M, Gherasim C, Gruber K, Fedosov S, Banerjee R, Kräutler B (2013) Access to organometallic arylcobaltcorrins through radical synthesis: 4-ethylphenylcobalamin, a potential “antivitamin B\(_{12}\)”. Angew Chem Int Ed 52:2606–2610Google Scholar
  73. 73.
    Ruetz M, Salchner R, Wurst K, Fedosov S, Kräutler B (2013) Phenylethynylcobalamin: a lightstable and thermolysisresistant organometallic vitamin B\(_{12}\) derivative prepared by radical synthesis. Angew Chem Int Ed 52:11,406–11,409Google Scholar
  74. 74.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRefGoogle Scholar
  75. 75.
    Rury AS, Wiley TE, Sension RJ (2015) Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. Acc Chem Res 48:860–867CrossRefGoogle Scholar
  76. 76.
    Ryde U, Mata RA, Grimme S (2011) Does DFT-D estimate accurate energies for the binding of ligands to metal complexes? Datlon Trans 40:11,176–11,183Google Scholar
  77. 77.
    Sandala GM, Smith DM, Radom L (2010) Modeling the reactions catalyzed by coenzyme B\(_{12}\)-dependent enzymes. Acc Chem Res 43:642–651CrossRefGoogle Scholar
  78. 78.
    Sension RJ, Harris DA, Cole AG (2005a) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: Comparison of the influence of solvent on the primary photolysis mechanism and geminate recombination of methyl-, ethyl-, n-propyl, and 5’-deoxyadenosylcobalamin. J Phys Chem B 109:21,954–21,962Google Scholar
  79. 79.
    Sension RJ, Harris DA, Stickrath A, Cole AG, Fox CC, Marsh EN (2005b) Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase. J Phys Chem B 109:18,146–18,152Google Scholar
  80. 80.
    Shell TA, Lawrence DS (2015) Vitamin B\(_{12}\): a tunable, long wavelength, light-responsive platform for launching therapeutic agents. Acc Chem Res 48:2866–2874CrossRefGoogle Scholar
  81. 81.
    Shell TA, Shell JR, Rodgers ZL, Lawrence DS (2014) Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas. Angew Chem Int Ed 53:875–878CrossRefGoogle Scholar
  82. 82.
    Shiang JJ, Walker LA, Anderson NA, Cole AG, Sension RJ (1999) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: The photolysis of methylcobalamin is wavelength dependent. J Phys Chem B 103:10,532–10,539Google Scholar
  83. 83.
    Shiang JJ, Cole AG, Sension RJ, Hang K, Weng Y, Trommel JS, Marzilli LG, Lian T (2006) Ultrafast excited-state dynamics in vitamin B\(_{12}\) and related cob(III)alamins. J Am Chem Soc 128:801–808CrossRefGoogle Scholar
  84. 84.
    Solheim H, Kornobis K, Ruud K, Kozlowski PM (2011) Electronically excited states of vitamin B\(_{12}\) and methylcobalamin: theoretical analysis of absorption, CD, and MCD data. J Phys Chem B 115:737–748CrossRefGoogle Scholar
  85. 85.
    Stich TA, Brooks AJ, Buan NR, Brunold TC (2003) Spectroscopic and computational studies of Co\(^{3+}\)-corrinoids: spectral and electronic properties of the B\(_{12}\) cofactors and biologically relevant precursors. J Am Chem Soc 125:5897–5914CrossRefGoogle Scholar
  86. 86.
    Stich TA, Buan NR, Brunold TC (2004) Spectroscopic and computational studies of Co\(^{2+}\)-corrinoids: spectral and electronic properties of the biologically relevant base-on and base-off forms of Co\(^{2+}\)cobalamin. J Am Chem Soc 126:9735–9749CrossRefGoogle Scholar
  87. 87.
    Stickrath AB, Carroll EC, Dai X, Harris DA, Rury A, Smith B, Kc Tang, Wert J, Sension RJ (2009) Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate receombinations of alkylcobalamins. J Phys Chem A 113:8513–8522CrossRefGoogle Scholar
  88. 88.
    Toohey JIA (1965) Vitamin B\(_{12}\) compound containing no cobalt. Proc Natl Acad Sci USA 54:934–942CrossRefGoogle Scholar
  89. 89.
    Toraya T (2003) Radical catalysis in coenzyme B\(_{12}\)-dependent isomerization (eliminating) reactions. Chem Rev 103:2095–2128CrossRefGoogle Scholar
  90. 90.
    Waibel R, Treichler H, Schaefer NG, van Staveren DR, Mundwiler S, Kunze S, Kuenzi M, Alberto R, Nuesch J, Knuth A, Moch H, Schibli R, Schubiger PA (2008) New derivatives of vitamin B\(_{12}\) show preferential targeting of tumors. Cancer Res 68:2904–2911CrossRefGoogle Scholar
  91. 91.
    Walker LA, Jarrett JT, Anderson NA, Pullen SH, Matthews RG, Sension RJ (1998) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: the identification of a metastable cob(III)alamin photoproduct in the photolysis of methylcobalamin. J Am Chem Soc 120:3597–3603CrossRefGoogle Scholar
  92. 92.
    Wiley TE, Arruda BC, Miller NA, Lenard M, Sension RJ (2015) Excited electronic states and internal conversion in cyanocobalamin. Chin Chem Lett 26:439–443CrossRefGoogle Scholar
  93. 93.
    Wiley TE, Miller WR, Miller NA, Sension RJ, Lodowski P, Jaworska M, Kozlowski PM (2016) Photostability of hydroxocobalamin: ultrafast excited state dynamics and computational studies. J Phys Chem Lett 7:143–7CrossRefGoogle Scholar
  94. 94.
    Yoder LM, Cole AG, Walker LA, Sension RJ (2001) Time-resolved spectroscopic studies of B\(_{12}\) coenzymes: influence of solvent on the photolysis of adenosylcobalamin. J Phys Chem B 105:12,180–12,188Google Scholar
  95. 95.
    Zelder F, Zhou K, Sonnay M (2013) Peptide B\({12}\): emerging trends at the interface of inorganic chemistry, chemical biology and medicine. Dalton Trans 42:854–862CrossRefGoogle Scholar
  96. 96.
    Zelder F, Sonnay M, Prieto L (2015) Antivitamins for medicinal applications. Chem Bio Chem 16:1264–1278CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA
  2. 2.Advanced Materials Engineering and Modelling Group, Department of ChemistryWroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations