Skip to main content

Computational Versus Experimental Spectroscopy for Transition Metals

  • Chapter
  • First Online:
Transition Metals in Coordination Environments

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

Abstract

Knowledge of the electronic structure of transition-metal complexes is increasingly being obtained through joint efforts by theory and experiments. Here, we describe a variety of examples where spectroscopy is being used to determine, e.g., the oxidation state, spin state, or coordination environment around redox-active metal ions such as iron , manganese , or nickel . Both enzymatic and biomimetic systems are included, from the literature and from our own laboratories. It is shown that the combined efforts of wet and dry laboratories lead to a more profound understanding, and allows for systematic exploration of coordinate chemistry around the central metal atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swart M, Costas M (eds) (2015) Spin states in biochemistry and inorganic chemistry: influence on structure and reactivity. Wiley, Oxford. https://doi.org/10.1002/9781118898277

  2. Que Jr L (2000) Physical methods in bioinorganic chemistry. University Science Books

    Google Scholar 

  3. Crichton R, Louro R (2013) Practical approaches to biological inorganic chemistry. Elsevier

    Google Scholar 

  4. Ray K, Duboc C (2018) ECOSTBio: explicit control over spin states in technology and biochemistry. Chem Eur J 24:5003–5005. https://doi.org/10.1002/chem.201801041

  5. Bergeler M, Stiebritz MT, Reiher M (2013) Structure–property relationships of Fe4S4 clusters. ChemPlusChem 78:1082–1098

    Google Scholar 

  6. Carvalho ATP, Swart M (2014) Electronic structure investigation and parameterization of biologically relevant iron-sulfur clusters. J Chem Inf Model 54:613–620

    Article  CAS  Google Scholar 

  7. Sharma S, Sivalingam K, Neese F, Chan GK-L (2014) Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics. Nat Chem 6:927–933. https://doi.org/10.1038/nchem.2041

  8. Kim J, Rees DC (1992) Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 257:1677–1682. https://doi.org/10.1126/science.1529354

    Article  CAS  PubMed  Google Scholar 

  9. Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700. https://doi.org/10.1126/science.1073877

  10. Ramaswamy S (2011) One atom makes all the difference. Science 334:914–915. https://doi.org/10.1126/science.1215283

    Article  CAS  PubMed  Google Scholar 

  11. Spatzal T et al (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334:940–940. https://doi.org/10.1126/science.1214025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang T-C, Maeser NK, Laryukhin M, Lee H-I, Dean DR, Seefeldt LC, Hoffman BM (2005) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J Am Chem Soc 127:12804–12805. https://doi.org/10.1021/ja0552489

    Article  CAS  PubMed  Google Scholar 

  13. Lancaster KM et al (2011) X-Ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 334:974–977. https://doi.org/10.1126/science.1206445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bjornsson R et al (2014) Identification of a spin-coupled Mo(III) in the nitrogenase iron–molybdenum cofactor. Chem Sci 5:3096–3103. https://doi.org/10.1039/c4sc00337c

  15. Sippel D et al (2018) A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359:1484–1489. https://doi.org/10.1126/science.aar2765

    Article  CAS  PubMed  Google Scholar 

  16. Cao L, Ryde U (2018) Influence of the protein and DFT method on the broken-symmetry and spin states in nitrogenase. Int J Quantum Chem 118:e25627. https://doi.org/10.1002/qua.25627

    Article  CAS  Google Scholar 

  17. Cao L, Caldararu O, Ryde U (2017) Protonation states of homocitrate and nearby residues in nitrogenase studied by computational methods and quantum refinement. J Phys Chem B 121:8242–8262. https://doi.org/10.1021/acs.jpcb.7b02714

    Article  CAS  PubMed  Google Scholar 

  18. Siegbahn PEM (2018) A major structural change of the homocitrate ligand of probable importance for the nitrogenase mechanism. Inorg Chem 57:1090–1095. https://doi.org/10.1021/acs.inorgchem.7b02493

    Article  CAS  PubMed  Google Scholar 

  19. Siegbahn PEM (2016) Model calculations suggest that the central carbon in the femo-cofactor of nitrogenase becomes protonated in the process of nitrogen fixation. J Am Chem Soc 138:10485–10495. https://doi.org/10.1021/jacs.6b03846

    Article  CAS  PubMed  Google Scholar 

  20. Siegbahn PEM (2018) Is there computational support for an unprotonated carbon in the E4 state of nitrogenase? J Comput Chem 39:743–747. https://doi.org/10.1002/jcc.25145

    Article  CAS  PubMed  Google Scholar 

  21. Dau H, Iuzzolino L, Dittmer J (2001) The tetra-manganese complex of photosystem II during its redox cycle—X-ray absorption results and mechanistic implications. BBA-Bioenergetics 1503:24–39. https://doi.org/10.1016/s0005-2728(00)00230-9

  22. Krewald V et al (2015) Metal oxidation states in biological water splitting. Chem Sci 6:1676–1695

    CAS  PubMed  Google Scholar 

  23. Rohde JU et al (2003) Crystallographic and spectroscopic characterization of a nonheme Fe(IV)-O complex. Science 299:1037–1039. https://doi.org/10.1126/science.299.5609.1037

  24. Fukuzumi S, Morimoto Y, Kotani H, Naumov P, Lee Y-M, Nam W (2010) Crystal structure of a metal ion-bound oxoiron(IV) complex and implications for biological electron transfer. Nat Chem 2:756–759. https://doi.org/10.1038/nchem.731

  25. McDonald AR, Que Jr L (2013) High-valent nonheme iron-oxo complexes: synthesis, structure, and spectroscopy. Coord Chem Rev 257:414–428. https://doi.org/10.1016/j.ccr.2012.08.002

  26. Swart M (2013) A change in oxidation state of iron: scandium is not innocent. Chem Commun 49:6650–6652. https://doi.org/10.1039/C3CC42200C

    Article  CAS  PubMed  Google Scholar 

  27. Swart M (2008) Accurate spin-state energies for iron complexes. J Chem Theory Comp 4:2057–2066

    CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximations made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  30. Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103

    Google Scholar 

  31. Han W-G, Liu T, Lovell T, Noodleman L (2006) DFT calculations of 57Fe Mössbaurer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase. J Comput Chem 27:1292–1306

    Google Scholar 

  32. Güell M, Solà M, Swart M (2010) Spin-state splittings of iron(II) complexes with trispyrazolyl ligands. Polyhedron 29:84–93. https://doi.org/10.1016/j.poly.2009.06.006

  33. MacBeth CE et al (2004) Utilization of hydrogen bonds to stabilize M-O(H) units: synthesis and properties of monomeric iron and manganese complexes with terminal oxo and hydroxo ligands. J Am Chem Soc 126:2556–2567. https://doi.org/10.1021/ja0305151

  34. Cho J et al (2011) Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex. Nature 478:502–505

    Google Scholar 

  35. Swart M, Gruden M (2016) Spinning around in transition-metal chemistry. Acc Chem Res 49:2690–2697. https://doi.org/10.1021/acs.accounts.6b00271

    Article  CAS  PubMed  Google Scholar 

  36. Zhou A, Kleespies ST, Van Heuvelen KM, Que Jr L (2015) Characterization of a heterobimetallic nonheme Fe(III)–O–Cr(III) species formed by O2 activation. Chem Commun 51:14326–14329. https://doi.org/10.1039/c5cc05931c

  37. Prakash J, Rohde GT, Meier KK, Münck E, Que Jr L (2015) Upside down! Crystallographic and spectroscopic characterization of an [FeIV(Osyn)(TMC)]2+ complex. Inorg Chem 54:11055–11057. https://doi.org/10.1021/acs.inorgchem.5b02011

  38. Ray K, England J, Fiedler AT, Martinho M, Münck E, Que Jr L (2008) An inverted and more oxidizing isomer of [Fe(IV)(O)(tmc)(NCCH3)]2+. Angew Chem Int Ed 47:8068–8071. https://doi.org/10.1002/anie.200802219

  39. Zhou A et al (2017) The two faces of tetramethylcyclam in iron chemistry: distinct Fe−O−M complexes derived from [FeIV(Oanti/syn)(TMC)]2+ isomers. Inorg Chem 56:518–527. https://doi.org/10.1021/acs.inorgchem.6b02417

  40. Padamati SK et al (2017) Transient formation and reactivity of a high-valent nickel(IV) oxido complex. J Am Chem Soc 139:8718–8724. https://doi.org/10.1021/jacs.7b04158

  41. Wieghardt K et al (1988) Synthesis, crystal structures, reactivity, and magnetochemistry of a series of binuclear complexes of manganese(II), -(III), and -(IV) of biological relevance. The crystal structure of [L′MnIV(m-O)3MnIVL′](PF6)2·H2O containing an unprecedented short Mn···Mn distance of 2.296 Å. J Am Chem Soc 110:7398–7411. https://doi.org/10.1021/ja00230a021

  42. Neubold P, Della Vedova BSPC, Wieghardt K, Nuber B, Weiss J (1990) Novel cofacial bioctahedral complexes of ruthenium: syntheses and properties of the mixed-valence species [LRu2.5(.mu.-X)3Ru2.5L]2 + (X = Cl, Br, I, OH). Crystal structures of [LRu2.5(.mu.-OH)3Ru2.5L](PF6)2.cntdot.H2O and [LRuIV(.mu.-O)3RuIVL](PF6)2.cntdot.H2O (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). Inorg Chem 29:3353–3363. https://doi.org/10.1021/ic00343a020

  43. Rohde J-U et al. (2004) Structural insights into nonheme alkylperoxoiron(III) and oxoiron(IV) intermediates by X-ray absorption spectroscopy. J Am Chem Soc 126:16750–16761. https://doi.org/10.1021/ja047667w

  44. Pirovano P, Farquhar E, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR (2015) Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chem Eur J 21:3785–3790. https://doi.org/10.1002/chem.201406485

  45. Pirovano P, Farquhar ER, Swart M, McDonald AR (2016) Tuning the reactivity of terminal nickel(III)–oxygen adducts for C–H bond activation. J Am Chem Soc 138:14362–14370. https://doi.org/10.1021/jacs.6b08406

  46. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New-York

    Book  Google Scholar 

  47. Mannini M et al (2009) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197. https://doi.org/10.1038/nmat2374

    Article  CAS  PubMed  Google Scholar 

  48. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186. https://doi.org/10.1038/nmat2133

    Article  CAS  PubMed  Google Scholar 

  49. Craig GA, Murrie M (2015) 3d single-ion magnets. Chem Soc Rev 44:2135–2142. https://doi.org/10.1039/c4cs00439f

  50. Frost JM, Harriman KLM, Murugesu M (2016) The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules? Chem Sci 7:2470–2491. https://doi.org/10.1039/c5sc03224e

    Article  CAS  PubMed  Google Scholar 

  51. Waldmann O (2007) A criterion for the anisotropy barrier in single-molecule magnets. Inorg Chem 46:10035–10037. https://doi.org/10.1021/ic701365t

    Article  CAS  PubMed  Google Scholar 

  52. Neese F, Pantazis DA (2011) What is not required to make a single molecule magnet. Faraday Discuss 148:229–238. https://doi.org/10.1039/C005256F

    Article  CAS  PubMed  Google Scholar 

  53. Duboc C, Gennari M (2015) Experimental techniques for determining spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 59–83. https://doi.org/10.1002/9781118898277.ch4

  54. Neese F (2006) Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splitting of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222. https://doi.org/10.1021/ja061798a

  55. Sousa C, de Graaf C (2015) Ab initio wavefunction approaches to spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 35–57. https://doi.org/10.1002/9781118898277.ch3

  56. Daul CA, Zlatar M, Gruden-Pavlovic M, Swart M (2015) Application of density functional and density functional based ligand field theory to spin states. In: Spin states in biochemistry and inorganic chemistry. Wiley, pp 7–34. https://doi.org/10.1002/9781118898277.ch2

  57. Pederson MR, Khanna SN (1999) Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys Rev B 60:9566–9572

    Google Scholar 

  58. Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568–6582

    Article  CAS  Google Scholar 

  59. Atanasov M, Daul CA, Rauzy C (2003) New insights into the effects of covalency on the ligand field parameters: a DFT study. Chem Phys Lett 367:737–746. https://doi.org/10.1016/s0009-2614(02)01762-1

    Article  CAS  Google Scholar 

  60. Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143

    CAS  Google Scholar 

  61. Duboc C, Ganyushin D, Sivalingam K, Collomb M-N, Neese F (2010) Systematic theoretical study of the zero-field splitting in coordination complexes of Mn(III). Density functional theory versus multireference wave function approaches. J Phys Chem A 114:10750–10758. https://doi.org/10.1021/jp107823s

    Article  CAS  PubMed  Google Scholar 

  62. Duboc C (2016) Determination and prediction of the magnetic anisotropy of Mn ions. Chem Soc Rev 45:5834–5847. https://doi.org/10.1039/C5CS00898K

    Article  CAS  PubMed  Google Scholar 

  63. Zlatar M et al (2016) Origin of the zero-field splitting in mononuclear octahedral MnIV complexes: a combined experimental and theoretical investigation. Inorg Chem 55:1192–1201. https://doi.org/10.1021/acs.inorgchem.5b02368

    Article  CAS  PubMed  Google Scholar 

  64. Leto DF, Massie AA, Colmer HE, Jackson TA (2016) X-Band electron paramagnetic resonance comparison of mononuclear MnIV-oxo and MnIV-hydroxo complexes and quantum chemical investigation of MnIV zero-field splitting. Inorg Chem 55:3272–3282. https://doi.org/10.1021/acs.inorgchem.5b02309

    Article  CAS  PubMed  Google Scholar 

  65. Barra AL, Gatteschi D, Sessoli R, Abbati GL, Cornia A, Fabretti AC, Uytterhoeven MG (1997) Electronic structure of manganese(III) compounds from high-frequency EPR spectra. Angew Chem Int Ed 36:2329–2331

    Google Scholar 

  66. Goldberg DP, Telser J, Krzystek J, Montalban AG, Brunel L-C, Barrett AGM, Hoffman BM (1997) EPR spectra from “EPR-silent” species:  high-field EPR spectroscopy of manganese(III) porphyrins. J Am Chem Soc 119:8722–8723. https://doi.org/10.1021/ja971169o

  67. Duboc C, Collomb MN (2009) Multifrequency high-field EPR investigation of a mononuclear manganese(IV) complex. Chem Commun 2715–2717. https://doi.org/10.1039/b901185d

  68. Brazzolotto D et al (2016) An experimental and theoretical investigation on pentacoordinated cobalt(III) complexes with an intermediate S = 1 spin state: how halide ligands affect their magnetic anisotropy. Chem Eur J 22:925–933. https://doi.org/10.1002/chem.201502997

  69. Wang LK et al (2018) Experimental and theoretical identification of the origin of magnetic anisotropy in intermediate spin iron(III) complexes. Chem Eur J 24:5091–5094. https://doi.org/10.1002/chem.201705989

  70. Duboc C, Phoeung T, Zein S, Pécaut J, Collomb MN, Neese F (2007) Origin of the zero-field splitting in mononuclear octahedral dihalide Mn-II complexes: an investigation by multifrequency high-field electron paramagnetic resonance and density functional theory. Inorg Chem 46:4905–4916. https://doi.org/10.1021/ic062384l

    Article  CAS  PubMed  Google Scholar 

  71. Ruamps R et al (2013) Giant Ising-type magnetic anisotropy in trigonal bipyramidal Ni(ii) complexes: experiment and theory. J Am Chem Soc 135:3017–3026. https://doi.org/10.1021/ja308146e

  72. Gruden-Pavlovic M, Peric M, Zlatar M, Garcia-Fernandez P (2014) Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni(II) complexes with potential molecular magnet behavior. Chem Sci 5:1453–1462. https://doi.org/10.1039/c3sc52984c

  73. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Cryst B 72:171–179. https://doi.org/10.1107/s2052520616003954

  74. Rozell WJ, Wood JS (1977) Crystal and molecular-structures of 5-coordinate complexes [Ni(LCH3)2Cl3]ClO4 and [Cu(LCH3)2Cl3]ClO4, where L+CH3 = N-methyl-1,4-diazabicyclo[2.2.2]octonium ion. Inorg Chem 16:1827–1833. https://doi.org/10.1021/ic50174a001

  75. Pritchard RG, Ali M, Munim A, Uddin A (2006) Effedcts d-orbital occupancy on the geometry of the trigonal-bipyramidal complexes (MCl3)-Cl-II(Hdabco)(dabco) (n), where M is Mn, Co, Ni or Cu and dabco is 1,4-diazabicyclo 2.2.2-octane. Acta Crystallogr Sect C Crystal Struct Commun 62:M507–M509. https://doi.org/10.1107/s0108270106037504

  76. Marriott KER, Bhaskaran L, Wilson C, Medarde M, Ochsenbein ST, Hill S, Murrie M (2015) Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni(ii). Chem Sci 6:6823–6828. https://doi.org/10.1039/c5sc02854j

  77. Nemec I, Herchel R, Svoboda I, Boca R, Travnicek Z (2015) Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(II) Schiff base complexes. Dalton Trans 44:9551–9560. https://doi.org/10.1039/c5dt00600g

Download references

Acknowledgements

The COST association action CM1305 ECOSTBio (STSM grant 34080), the European Research Council (ERC 279549, WRB), the labex arcane (ANR-11-LABX-003), MINECO (CTQ2014-59212-P, CTQ2015-70851-ERC, CTQ2017-87392-P, MS), GenCat (2014SGR1202, MS), FEDER (UNGI10-4E-801, MS), and the Serbian Ministry of Science (Grant No. 172035) are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Swart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gruden, M., Browne, W.R., Swart, M., Duboc, C. (2019). Computational Versus Experimental Spectroscopy for Transition Metals. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_6

Download citation

Publish with us

Policies and ethics