Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry

  • Matthias SteinEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


Spectroscopic investigations of the interaction of a spin magnetic moment with an external magnetic field reveal insight into the electronic structure, e.g. the composition of the occupied molecular orbitals of the system, the oxidation state of a possible transition metal and its coordination environment. For paramagnetic systems, electron spin resonance (ESR) and related techniques probe the interaction between electron and nuclear spins, provide information about the spatial distribution of the spin density and allow identifying binding partners which are often not resolved structurally, for example hydrogen atoms. In particular, diagonalization of the electron Zeeman and electron-nuclear hyperfine interaction matrices does not only give their principal values but also their magnetic principal axes and allows making statements about the spatial arrangement of coordinating atoms and ligands. The advancement of computational approaches to calculate the parameters of the effective Spin Hamiltonian such as the electronic g-tensors and hyperfine tensors and their comparison with experiment supports the analysis and interpretation of complex magnetic resonance spectra. This is discussed here for g- and hyperfine tensors and zero-field splitting tensors for selected examples including transition metal containing model complexes and metalloenzymes.


bioinorganic chemistry spin-orbit coupling EPR hydrogenase g-tensor single crystals 



Support by the Max Planck Society for the Advancement of Science is acknowledged. Part of this work was also financed by the EU COST Action CM1305 ‘ECOSTBio’ and the EU-program ERDF (European Regional Development Fund) of the German Federal State Saxony-Anhalt within the Research Center of Dynamic Systems (CDS).


  1. 1.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Mabbs FE, Collinson D (1992) Electron paramagnetic resonance of d transition metal compounds. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 0:142–152Google Scholar
  4. 4.
    Walsh CT, Orme-Johnson WH (1987) Nickel enzymes. Biochemistry 26:4901–4906CrossRefGoogle Scholar
  5. 5.
    Lubitz W, Ogata H, Rudiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148CrossRefGoogle Scholar
  6. 6.
    Lubitz W, Reijerse E, van Gastel M (2007) NiFe and FeFe hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365CrossRefGoogle Scholar
  7. 7.
    Siegbahn PEM, Tye JW, Hall MB (2007) Computational studies of NiFe and FeFe hydrogenases. Chem Rev 107:4414–4435CrossRefGoogle Scholar
  8. 8.
    Stein M, Lubitz W (2002) Quantum chemical calculations of NiFe hydrogenase. Curr Opin Chem Biol 6:243–249CrossRefGoogle Scholar
  9. 9.
    Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367CrossRefGoogle Scholar
  10. 10.
    Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit Rev Biochem Mol Biol 38:351–384CrossRefGoogle Scholar
  11. 11.
    Metz S, Thiel W (2011) Theoretical studies on the reactivity of molybdenum enzymes. Coord Chem Rev 255:1085–1103CrossRefGoogle Scholar
  12. 12.
    Richards RL (1996) Reactions of small molecules at transition metal sites: studies relevant to nitrogenase, an organometallic enzyme. Coord Chem Rev 154:83–97CrossRefGoogle Scholar
  13. 13.
    Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267CrossRefGoogle Scholar
  14. 14.
    Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816CrossRefGoogle Scholar
  15. 15.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn–SOD (SOD1), Mn–SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349CrossRefGoogle Scholar
  16. 16.
    Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312CrossRefGoogle Scholar
  17. 17.
    Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-Cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943CrossRefGoogle Scholar
  18. 18.
    Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631CrossRefGoogle Scholar
  19. 19.
    Siegbahn PEM (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880CrossRefGoogle Scholar
  20. 20.
    Griffith JS (1960) Some investigations in the theory of open-shell ions.1 the spin-hamiltonian. Mol Physics 3:79–89CrossRefGoogle Scholar
  21. 21.
    Abragam A, Pryce MHL (1951) Theory of the nuclear hyperfine structure of paramagnetic resonance spectra in crystals. Proc R Soc London Ser Math Phys Sci 205:135–153Google Scholar
  22. 22.
    Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic Press, New YorkGoogle Scholar
  23. 23.
    Patchkovskii S, Schreckenbach G (2004) Calculation of EPR g‐tensors with density functional theory. In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parametersGoogle Scholar
  24. 24.
    Autschbach J (2010) Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes. In: Barysz M, Ishikawa Y (eds) Relativistic methods for chemists. Springer, Netherlands, Amsterdam, pp 521–598CrossRefGoogle Scholar
  25. 25.
    Reiher M, Wolf A (2015) Relativistic quantum chemistry. Wiley, WeinheimGoogle Scholar
  26. 26.
    Dyall KG (1997) Interfacing relativistic and nonrelativistic methods. I. Normalized elimination of the small component in the modified dirac equation. J Chem Phys 106:9618–9626CrossRefGoogle Scholar
  27. 27.
    Dyall KG (1994) An exact separation of the spin-free and spin-dependent terms of the dirac–coulomb–breit hamiltonian. J Chem Phys 100:2118–2127CrossRefGoogle Scholar
  28. 28.
    Kaupp M, Bühl M, Malkin VG (2004) Calculation of NMR and EPR parameters. Wiley, WeinheimCrossRefGoogle Scholar
  29. 29.
    Autschbach J (2010) Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes, pp 521–598Google Scholar
  30. 30.
    Neese F (2017) Quantum chemistry and EPR parameters. In: Harris RK, Wasylishen RL (eds) eMagResGoogle Scholar
  31. 31.
    Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563CrossRefGoogle Scholar
  32. 32.
    Neese F, Solomon EI (2002) Interpretation and calculation of spin-hamiltonian parameters in transition metal complexes. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley, Weinheim, pp 345–466Google Scholar
  33. 33.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967CrossRefGoogle Scholar
  34. 34.
    Baerends EJ, Ziegler T, Atkins AJ, Autschbach J, Bashford D, Baseggio O, Brces, A, Bickelhaupt FM, Bo C, Boerritger PM, Cavallo L, Daul C, Chong DP, Chulhai DV, Deng L, Dickson RM, Dieterich JM, Ellis DE, van Faassen M, Ghysels A, Giammona A, van Gisbergen SJA, Goez A, Gtz AW, Gusarov S, Harris FE, van den Hoek P, Hu Z, Jacob CR, Jacobsen H, Jensen L, Joubert L, Kaminski JW, van Kessel G, Knig C, Kootstra F, Kovalenko A, Krykunov M, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Peeples CA, Philipsen PHT, Post D, Pye CC, Ramanantoanina H, Ramos P, Ravenek W, Rodrguez JI, Ros P, Rger R, Schipper PRT, Schlns D, van Schoot H, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Sol ADF (2017) SCM, theoretical chemistry. Vrije Universiteit, Amsterdam, The Netherlands.
  35. 35.
    Neese F (2011) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRefGoogle Scholar
  36. 36.
    Neese F (2017) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8: e1327Google Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T., Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT, USGoogle Scholar
  38. 38.
    Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik I-M, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Ågren H (2013) The dalton quantum chemistry program system. Wiley Interdiscip Rev Comput Mol Sci 4:269–284CrossRefGoogle Scholar
  39. 39.
    Malkin VG, Malkina OL, Reviakine R, Arbouznikov AV, Kaupp M, Schimmelpfennig B, Malkin I, Helgaker T, Ruud K (2010) RespectGoogle Scholar
  40. 40.
    Van Yperen-De Deyne A, Pauwels E, Van Speybroeck V, Waroquier M (2012) Accurate spin–orbit and spin-other-orbit contributions to the g-tensor for transition metal containing systems. Phys Chem Chem Phys 14:10690–10704CrossRefGoogle Scholar
  41. 41.
    Neese F (2003) Quantum chemical calculations of spectroscopic properties of metalloproteins and model compounds: EPR and Moessbauer properties. Curr Opin Chem Biol 7:125–135CrossRefGoogle Scholar
  42. 42.
    Lushington GH, Bundgen P, Grein F (1995) Ab-initio study of molecular g-tensors. Int J Q Chem 55:377–392CrossRefGoogle Scholar
  43. 43.
    Lushington GH, Grein F (1996) Complete to second-order Ab initio level calculations of electronic g-tensors. Theor. Chim. Acta 93:259–267Google Scholar
  44. 44.
    Lushington GH (2000) Small closed-form CI expansions for electronic g-tensor calculations. J Phys Chem A 104:2969–2974CrossRefGoogle Scholar
  45. 45.
    Jayatilaka D (1998) Electron spin resonance g tensors from general Hartree-Fock calculations. J Chem Phys 108:7587–7594CrossRefGoogle Scholar
  46. 46.
    Vahtras O, Minaev B, Agren H (1997) Ab initio calculations of electronic g-factors by means of multi-configuration response theory. Chem Phys Lett 281:186–192CrossRefGoogle Scholar
  47. 47.
    Rinkevicius Z, Telyatnyk L, Salek P, Vahtras O, Agren H (2003) Restricted density-functional linear response theory calculations of electronic g-tensors. J Chem Phys 119:10489–10496CrossRefGoogle Scholar
  48. 48.
    Schreckenbach G, Ziegler T (1997) Calculation of the g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J Phys Chem A 101:3388–3399CrossRefGoogle Scholar
  49. 49.
    van Lenthe E, Wormer PES, van der Avoird A (1997) Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. J Chem Phys 107:2488–2498CrossRefGoogle Scholar
  50. 50.
    Malkina OL, Vaara J, Schimmelpfennig B, Munzarová M, Malkin VG, Kaupp M (2000) Density functional calculations of electronic g-tensors using spin−orbit pseudo-potentials and mean-field all-electron spin−orbit operators. J Am Chem Soc 122:9206–9218CrossRefGoogle Scholar
  51. 51.
    Kaupp M, Reviakine R, Malkina OL, Arbuznikov A, Schimmelpfennig B, Malkin VG (2002) Calculation of electronic g-tensors for transition metal complexes using hybrid density functionals and atomic mean field spin–orbit operators. J Comput Chem 23:794–803CrossRefGoogle Scholar
  52. 52.
    Cherry PJ, Komorovsky S, Malkin VG, Malkina OL (2017) Calculations of the EPR g-tensor using unrestricted two- and four-component relativistic approaches within the HF and DFT frameworks. Mol Phys 115:75–89CrossRefGoogle Scholar
  53. 53.
    Neese F (2001) Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096CrossRefGoogle Scholar
  54. 54.
    Neese F (2001) Configuration interaction calculation of electronic g tensors in transition metal complexes. Int J Q Chem 83:104–114CrossRefGoogle Scholar
  55. 55.
    Patchkovskii S, Ziegler T (2001) Calculation of the EPR g-tensors of high-spin radicals with density functional theory. J Phys Chem A 105:5490–5497CrossRefGoogle Scholar
  56. 56.
    Neyman KM, Ganyushin DI, Matveev AV, Nasluzov VA (2002) Calculation of electronic g-tensors using a relativistic density functional Douglas-Kroll method. J Phys Chem A 106:5022–5030CrossRefGoogle Scholar
  57. 57.
    Tatchen J, Kleinschmidt M, Marian CM (2009) Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multi-reference spin–orbit configuration interaction wave functions. J Chem Phys 130:154106CrossRefGoogle Scholar
  58. 58.
    Vancoillie S, Malmqvist P-Å, Pierloot K (2007) Calculation of EPR g tensors for transition-metal complexes based on multi-configurational perturbation Theory (CASPT2). Chem Phys Chem 8:1803–1815CrossRefGoogle Scholar
  59. 59.
    Neese F (2007) Analytic derivative calculation of electronic g-tensors based on multi-reference configuration interaction wave functions. Mol Phys 105:2507–2514CrossRefGoogle Scholar
  60. 60.
    Gauss J, Kállay M, Neese F (2009) Calculation of electronic g-tensors using coupled cluster theory. J Phys Chem A 113:11541–11549CrossRefGoogle Scholar
  61. 61.
    Sayfutyarova ER, Chan GKL (2018) Electron paramagnetic resonance g-tensors from state interaction spin–orbit coupling density matrix renormalization group. J Chem Phys 148Google Scholar
  62. 62.
    Schreckenbach G, Ziegler T (1998) Density functional calculations of NMR chemical shifts and ESR g-tensors. Theor Chem Acc 99:71–82CrossRefGoogle Scholar
  63. 63.
    Patchkovskii S, Ziegler T (1999) Prediction of electron paramagnetic resonance g-tensors of transition metal complexes using density functional theory: first applications to some axial d(1)MEX(4) systems. J Chem Phys 111:5730–5740CrossRefGoogle Scholar
  64. 64.
    van Lenthe E, van der Avoird A, Wormer PES (1998) Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects. J Chem Phys 108:4783–4796CrossRefGoogle Scholar
  65. 65.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996) A mean-field spin–orbit method applicable to correlated wavefunctions. Chem Phys Lett 251:365–371CrossRefGoogle Scholar
  66. 66.
    Neese F (2005) Efficient and accurate approximations to the molecular spin–orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 122Google Scholar
  67. 67.
    Rauchfuss TB (2004) Synthesis of transition metal dithiolenes. In: Stiefel EI (ed) Progress in inorganic chemistry: synthesis, properties, and applications, pp 1–54Google Scholar
  68. 68.
    Harrop TC, Mascharak PK (2006) Model complexes of Ni-containing enzymes. Wiley, KGaA, pp 309–329Google Scholar
  69. 69.
    Schilter D, Camara JM, Huynh MT, Hammes-Schiffer S, Rauchfuss TB (2016) Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem Rev 116:8693–8749CrossRefGoogle Scholar
  70. 70.
    Maki AH, Davison A, Edelstein N, Holm RH (1964) Electron paramagnetic resonance studies of electronic structures of Bis(maleonitriledithiolato) copper(II)-nickel(III)-cobalt(II)-rhodium(II)-complexes. J Am Chem Soc 86:4580–4458XCrossRefGoogle Scholar
  71. 71.
    Stein M, van Lenthe E, Baerends EJ, Lubitz W (2001) g- and a-tensor calculations in the zero-order approximation for relativistic effects of Ni complexes Ni(mnt)(2)(-) and Ni(CO)(3)H as model complexes for the active center of NiFe -hydrogenase. J Phys Chem A 105:416–425CrossRefGoogle Scholar
  72. 72.
    Huyett JE, Choudhury SB, Eichhorn DM, Bryngelson PA, Maroney MJ, Hoffman BM (1998) Pulsed ENDOR and ESEEM Study of [Bis(maleonitriledithiolato)nickel]: an investigation into the ligand electronic structure. Inorg Chem 37:1361–1367CrossRefGoogle Scholar
  73. 73.
    Singh SK, Atanasov M, Neese F (2018) Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J Chem Theory Comput 14:4662–4677CrossRefGoogle Scholar
  74. 74.
    Cosper MM, Neese F, Astashkin AV, Carducci MD, Raitsimring AM, Enemark JH (2005) Determination of the g-tensors and their orientations for cis, trans-(L-N2S2)MoVOX (X = Cl, SCH2Ph) by single-crystal epr spectroscopy and molecular orbital calculations. Inorg Chem 44:1290–1301CrossRefGoogle Scholar
  75. 75.
    Fritscher J, Hrobárik P, Kaupp M (2007) Computational studies of electron paramagnetic resonance parameters for paramagnetic molybdenum complexes. 1. Method validation on small and medium-sized systems. J Phys Chem B 111:4616–4629CrossRefGoogle Scholar
  76. 76.
    Fritscher J, Hrobárik P, Kaupp M (2007) Computational studies of epr parameters for paramagnetic molybdenum complexes. II. larger MoV systems relevant to molybdenum enzymes. Inorg Chem 46:8146–8161CrossRefGoogle Scholar
  77. 77.
    Foerster S, Stein M, Brecht M, Ogata H, Higuchi Y, Lubitz W (2003) Single crystal EPR studies of the reduced active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Am Chem Soc 125:83–93CrossRefGoogle Scholar
  78. 78.
    Trofanchuk O, Stein M, Gessner C, Lendzian F, Higuchi Y, Lubitz W (2000) Single crystal EPR studies of the oxidized active site of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 5:36–44CrossRefGoogle Scholar
  79. 79.
    Kampa M, Pandelia M-E, Lubitz W, van Gastel M, Neese F (2013) A metal-metal bond in the light-induced state of [NiFe] hydrogenases with relevance to hydrogen evolution. J Am Chem Soc 135:3915–3925CrossRefGoogle Scholar
  80. 80.
    Gessner C, Trofanchuk O, Kawagoe K, Higuchi Y, Yasuoka N, Lubitz W (1996) Single crystal EPR study of the Ni center of NiFe hydrogenase. Chem Phys Lett 256:518–524CrossRefGoogle Scholar
  81. 81.
    van Gastel M, Stein M, Brecht M, Schröder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W (2006) A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 11:41–51CrossRefGoogle Scholar
  82. 82.
    Stein M, Lubitz W (2001) DFT calculations of the electronic structure of the paramagnetic states Ni–A, Ni–B and Ni–C of [NiFe] hydrogenase. Phys Chem Chem Phys 3:2668–2675CrossRefGoogle Scholar
  83. 83.
    Carmieli R, Larsen TM, Reed GH, Zein S, Neese F, Goldfarb D (2007) The catalytic Mn2 + sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations. J Am Chem Soc 129:4240–4252CrossRefGoogle Scholar
  84. 84.
    Neese F (2006) Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222CrossRefGoogle Scholar
  85. 85.
    Sundararajan M, Neese F (2012) Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin. J Chem Theory Comput 8:563–574CrossRefGoogle Scholar
  86. 86.
    Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D (2010) Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 12:7276–7289CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Molecular Simulations and Design GroupMax Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations