Applications of Computational Chemistry to Selected Problems of Transition-Metal Catalysis in Biological and Nonbiological Systems

  • Hajime HiraoEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


The chemistry of transition-metal-containing systems is highly complex and diverse and thus lends itself to careful computational investigation. Indeed, computational chemistry can play fundamentally important roles in elucidating the catalytic mechanisms of such systems, by offering information about short-lived intermediates and transition states as well as factors that determine catalytic properties, which is not easily attained by experimental means. A quantum mechanical description of a targeted catalytic system could be difficult or unfeasible in many circumstances, especially when large systems such as metalloenzymes and coordination polymers are studied. Nevertheless, valuable insights can still be gained from hybrid computational techniques that allow concrete realizations of extensive reaction pathway analyses. This chapter gives a brief overview of some of our recent attempts to study the structure and activity of transition-metal-containing systems varying in size using several computational approaches.


Computational chemistry Transition catalysis DFT calculation QM/MM QM/QM’ Reaction mechanism 



The author thanks collaborators for fruitful collaborations and City University of Hong Kong (grant numbers 7200534 and 9610369) and JST-PRESTO (grant number JPMJPR141B) for generous financial support.


  1. 1.
    Ortiz de Montellano PR (2005) CytochromeP450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, NYGoogle Scholar
  2. 2.
    Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980CrossRefGoogle Scholar
  3. 3.
    Groves JT (1985) J Chem Educ 62:928–934CrossRefGoogle Scholar
  4. 4.
    Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887CrossRefGoogle Scholar
  5. 5.
    Poulos TL (2014) Chem Rev 114:3919–3962CrossRefGoogle Scholar
  6. 6.
    Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235–350CrossRefGoogle Scholar
  7. 7.
    Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986Google Scholar
  8. 8.
    Krebs C, Fujimori DG, Walsh CT, Bollinger JM Jr (2007) Acc Chem Res 40:484–492CrossRefGoogle Scholar
  9. 9.
    Bollinger JM Jr, Krebs C (2007) Curr Opin Chem 11:151–158CrossRefGoogle Scholar
  10. 10.
    Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L Jr (2010) Inorg Chem 49:3618–3628CrossRefGoogle Scholar
  11. 11.
    Oloo WN, Que L Jr (2015) Acc Chem Res 48:2612–2621CrossRefGoogle Scholar
  12. 12.
    Nam W, Lee YM, Fukuzumi S (2014) Acc Chem Res 47:1146–1154CrossRefGoogle Scholar
  13. 13.
    Nam W (2015) Acc Chem Res 48:2415–2423CrossRefGoogle Scholar
  14. 14.
    Cho KB, Hirao H, Shaik S, Nam W (2016) Chem Soc Rev 45:1197–1210CrossRefGoogle Scholar
  15. 15.
    Hohenberger J, Ray K, Meyer K (2012) Nature Commun 3: Article 720Google Scholar
  16. 16.
    Shaik S, Kumar D, de Visser SP, Altun A, Thiel W (2005) Chem Rev 105:2279–2328CrossRefGoogle Scholar
  17. 17.
    Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542CrossRefGoogle Scholar
  18. 18.
    Shaik S, Hirao H, Kumar D (2007) Nat Prod Rep 2007(24):533–552CrossRefGoogle Scholar
  19. 19.
    Siegbahn PEM, Borowski T (2006) Acc Chem Res 39:729–738CrossRefGoogle Scholar
  20. 20.
    Bassan A, Blomberg MRA, Borowski T, Siegbahn PEM (2006) J Inorg Biochem 100:727–743CrossRefGoogle Scholar
  21. 21.
    Neese F (2017) Angew Chem Int Ed 56:11003–11010CrossRefGoogle Scholar
  22. 22.
    Ye S, Geng CY, Shaik S, Neese F (2013) Phys Chem Chem Phys 15:8017–8030CrossRefGoogle Scholar
  23. 23.
    de Visser SP, Rohde JU, Lee YM, Cho J, Nam W (2013) Coord Chem Rev 257:381–393CrossRefGoogle Scholar
  24. 24.
    Hirao H, Thellamurege N, Zhang X (2014) Front Chem 2: Article 14Google Scholar
  25. 25.
    Kohn W, Sham LJ (1965) Phys Rev A 140:A1133–A1138CrossRefGoogle Scholar
  26. 26.
    Seidl A, Görling A, Vogl P, Majewski JA, Levy M (1996) Phys Rev B 53:3764–3774CrossRefGoogle Scholar
  27. 27.
    Ziegler T, Autschbach J (2005) Chem Rev 105:2695–2722CrossRefGoogle Scholar
  28. 28.
    Harvey JN (2006) Annu Rep Prog Chem Sect C 102:203–224CrossRefGoogle Scholar
  29. 29.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10760CrossRefGoogle Scholar
  30. 30.
    Liu P, Houk KN (2011) Inorg Chim Acta 369:2–14CrossRefGoogle Scholar
  31. 31.
    Sameera WMC, Maseras F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:375–385CrossRefGoogle Scholar
  32. 32.
    Blomberg MRA, Borowski T, Himo F, Liao RZ, Siegbahn PEM (2014) Chem Rev 114:3601–3658CrossRefGoogle Scholar
  33. 33.
    Sakaki S (2015) Bull Chem Soc Jpn 88:889–938CrossRefGoogle Scholar
  34. 34.
    Cheng GJ, Zhang X, Chung LW, Xu L, Wu YD (2015) J Am Chem Soc 137:1706–1725CrossRefGoogle Scholar
  35. 35.
    Sperger T, Sanhueza IA, Kalvet I, Schoenebeck F (2015) Chem Rev 115:9532–9586CrossRefGoogle Scholar
  36. 36.
    Eisenstein O, Milani J, Perutz RN (2017) Chem Rev 117:8710–8753CrossRefGoogle Scholar
  37. 37.
    Hopmann KH (2018) Int J Quantum Chem 115:1232–1249CrossRefGoogle Scholar
  38. 38.
    Guan J, Zarić SD, Brothers EN, Hall MB (2018) Int J Quantum Chem 2018(118):e25605CrossRefGoogle Scholar
  39. 39.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127–11143CrossRefGoogle Scholar
  40. 40.
    Bühl M, Kabrede H (2006) J Chem Theory Comput 2:1282–1290CrossRefGoogle Scholar
  41. 41.
    Furche F, Perdew JP (2006) J Chem Phys 124:044103CrossRefGoogle Scholar
  42. 42.
    Weymuth T, Couzijn EPA, Chen P, Reiher M (2014) J Chem Theory Comput 10:3092–3103CrossRefGoogle Scholar
  43. 43.
    Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452CrossRefGoogle Scholar
  44. 44.
    Cohen AJ, Mori-Sánchez P, Yang W (2011) Chem Rev 112:289–320CrossRefGoogle Scholar
  45. 45.
    Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L Jr, Truhlar DG (2017) Phys Chem Chem Phys 19:13049–13069CrossRefGoogle Scholar
  46. 46.
    Grimme S (2011) Wiley Interdiscip Rev Comput Mol Sci 1:211–228CrossRefGoogle Scholar
  47. 47.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229CrossRefGoogle Scholar
  48. 48.
    Lonsdale R, Harvey JN, Mulholland AJ (2012) Chem Soc Rev 41:3025–3038CrossRefGoogle Scholar
  49. 49.
    Quesne MG, Borowski T, de Visser SP (2015) Chem Eur J 22:2562–2581CrossRefGoogle Scholar
  50. 50.
    Chung LW, Hirao H, Li X, Morokuma K (2012) Wiley Interdiscip Rev Comput Mol Sci 2:327–350CrossRefGoogle Scholar
  51. 51.
    Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015) Chem Rev 115:5678–5796CrossRefGoogle Scholar
  52. 52.
    Hirao H, Xu K, Chuanprasit P, Moeljadi AMP, Morokuma K (2017) Key concepts and applications of ONIOM method. In: Tunon I, Moliner V (eds) Simulating enzyme reactivity: computational methods in enzyme catalysis. The Royal Society of Chemistry, Cambridge, pp 245–293Google Scholar
  53. 53.
    Wu C, Yue G, Nielsen CDT, Xu K, Hirao H, Zhou J (2016) J Am Chem Soc 138:742–745CrossRefGoogle Scholar
  54. 54.
    Pooi B, Lee J, Choi K, Hirao H, Hong SH (2014) J Org Chem 79:9231–9245CrossRefGoogle Scholar
  55. 55.
    Gazi S, Ng WKH, Ganguly R, Moeljadi AMP, Hirao H, Soo HS (2015) Chem Sci 6:7130–7142CrossRefGoogle Scholar
  56. 56.
    Gazi S, Đokić M, Moeljadi AMP, Ganguly R, Hirao H, Soo HS (2017) ACS Catal 7:4682–4691CrossRefGoogle Scholar
  57. 57.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110:3552–3599CrossRefGoogle Scholar
  58. 58.
    Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Chem Rev 118:614–678CrossRefGoogle Scholar
  59. 59.
    Xu H, Yang P, Chuanprasit P, Hirao H, Zhou JS (2015) Angew Chem Int Ed 54:5112–5116CrossRefGoogle Scholar
  60. 60.
    Yang P, Lim LH, Chuanprasit P, Hirao H, Zhou JS (2016) Angew Chem Int Ed 55:12083–12087CrossRefGoogle Scholar
  61. 61.
    Hirao H, Cheong ZH, Wang X (2012) J Phys Chem B 116:7787–7794CrossRefGoogle Scholar
  62. 62.
    Hirao H, Chuanprasit P, Cheong YY, Wang X (2013) Chem Eur J 19:7361–7369CrossRefGoogle Scholar
  63. 63.
    Hirao H, Thellamurege NM, Chuanprasit P, Xu K (2013) Int J Mol Sci 14:24692–24705CrossRefGoogle Scholar
  64. 64.
    Hirao H, Chuanprasit P (2015) Chem Phys Lett 621:188–192CrossRefGoogle Scholar
  65. 65.
    Chuanprasit P, Goh SH, Hirao H (2015) ACS Catal 5:2952–2960CrossRefGoogle Scholar
  66. 66.
    Yoshimoto FK, Guengerich FP (2014) J Am Chem Soc 136:15016–15025CrossRefGoogle Scholar
  67. 67.
    Xu K, Wang Y, Hirao H (2015) ACS Catal 5:4175–4179CrossRefGoogle Scholar
  68. 68.
    Ghosh D, Griswold J, Erman M, Pangborn W (2009) Nature 457:219–223CrossRefGoogle Scholar
  69. 69.
    Hirao H (2011) Chem Lett 40:1179–1181CrossRefGoogle Scholar
  70. 70.
    Thellamurege N, Hirao H (2013) Molecules 18:6782–6791CrossRefGoogle Scholar
  71. 71.
    Thellamurege N, Hirao H (2014) J Phys Chem B 118:2084–2092PubMedGoogle Scholar
  72. 72.
    Hirao H, Morokuma K (2009) J Am Chem Soc 131:17206–17214CrossRefGoogle Scholar
  73. 73.
    Hirao H, Morokuma K (2010) J Am Chem Soc 132:17901–17909CrossRefGoogle Scholar
  74. 74.
    Hirao H, Morokuma K (2010) J Phys Chem Lett 1:901–905CrossRefGoogle Scholar
  75. 75.
    Hirao H, Morokuma K (2011) J Am Chem Soc 133:14550–14553CrossRefGoogle Scholar
  76. 76.
    Hirao H, Morokuma K (2011) Yakugaku Zasshi – J Pharm Soc Jpn 131:1151–1161Google Scholar
  77. 77.
    Hirao H (2011) J Phys Chem B 115:11278–11285CrossRefGoogle Scholar
  78. 78.
    Xu K, Hirao H (2018) Phys Chem Chem Phys 20:18938–18948CrossRefGoogle Scholar
  79. 79.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Proc Natl Acad Sci USA 99:15971–15976CrossRefGoogle Scholar
  80. 80.
    Siegbahn PEM, Shestakov AF (2005) J Comput Chem 26:888–898CrossRefGoogle Scholar
  81. 81.
    Hofmann M, Kassube JK, Graf T (2005) J Biol Inorg Chem 10:490–495CrossRefGoogle Scholar
  82. 82.
    Stein BW, Kirk ML (2014) Chem Commun 50:1104–1106Google Scholar
  83. 83.
    Rokhsana D, Large TAG, Dienst MC, Retegan M, Neese F (2016) J Biol Inorg Chem 21:491–499Google Scholar
  84. 84.
    Hirao H, Ng WKH, Moeljadi AMP, Bureekaew S (2015) ACS Catal 5:3287–3291Google Scholar
  85. 85.
    Doitomi K, Xu K, Hirao H (2017) Dalton Trans 46:3470–3481Google Scholar
  86. 86.
    Doitomi K, Hirao H (2017) Tetrahedron Lett 58:2309–2317CrossRefGoogle Scholar
  87. 87.
    Xu K, Moeljadi AMP, Mai BK, Hirao H (2018) J Phys Chem C 122:503–514Google Scholar
  88. 88.
    Ghalei B, Sakurai K, Kinoshita Y, Isfahani AP, Song Q, Doitomi K, Furukawa S, Hirao H, Kusuda H, Kitagawa S, Sivaniah E (2017) Nat Energy 2: Article 17086Google Scholar
  89. 89.
    North M, Pasquale R, Young C (2010) Green Chem 12:1514–1539CrossRefGoogle Scholar
  90. 90.
    Beyzavi MH, Stephenson CJ, Liu Y, Karagiaridi O, Hupp JT, Farha OK (2015) Front Energy Res 2: Article 63Google Scholar
  91. 91.
    Cho HY, Yang DA, Kim J, Jeong SY, Ahn WS (2012) Catal Today 185:35–40CrossRefGoogle Scholar
  92. 92.
    Moeljadi AMP, Schmid R, Hirao H (2016) Can J Chem 94:1144–1150Google Scholar
  93. 93.
    Bureekaew S, Amirjalayer S, Tafipolsky M, Spickermann C, Roy TK, Schmid R (2013) Phys Status Solidi B 250:1128–1141Google Scholar
  94. 94.
    Wang R, Ozhgibesov M, Hirao H (2016) J Comput Chem 37:2349–2359CrossRefGoogle Scholar
  95. 95.
    Wang R, Ozhgibesov M, Hirao H (2018) J Comput Chem 39:307–318Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryCity University of Hong KongHong KongChina

Personalised recommendations