Skip to main content

Catalytic Properties of Selected Transition Metal Oxides—Computational Studies

  • Chapter
  • First Online:
Book cover Transition Metals in Coordination Environments

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 29))

Abstract

This chapter is the review of the computational methods applied to the transition metal oxides most abundant in heterogeneous catalysis and is focused on the influence of the environment on the transition metal cation properties. The shortcomings of the most commonly used DFT level of theory are discussed, and its extensions towards more realistic environment are presented. The modern reactive force-field methods are also mentioned. The embedding schemes most commonly found in the quantum-chemical or classical description of the heterogeneous processes are discussed. The errors stemming from the non-completeness of the basis function, i.e. the basis set superposition error, found in the calculations with atomic basis, and the Pulay stress, occurring in the planewave calculations, together with remedies, are briefly described. It is shown that in all discussed systems, i.e. \( {\mathrm {CeO}}_{2}\), \({\mathrm {TiO}}_{2}\), \({\mathrm {ZrO}}_{2}\), zeolites, d-electron metal spinels, and \({\mathrm {V}}_{2}\mathrm{O}_{5}\), the appropriately applied Hubbard DFT GGA+U methods are successful for the compromise between computational cost and resultant accuracy. The much more time-consuming hybrid functionals give slightly more accurate results and, moreover, are more universal in the sense that they do not need calibration against experiment contrary to DFT+U where the Hubbard correction needs to be carefully selected for modelling particular properties.

W. P. dedicates this work to his mother on the occasion of her round jubilee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartwig JF (2010) Organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito

    Google Scholar 

  2. Fajardo J, Peters JC (2017) J Am Chem Soc 139(45):16105. https://doi.org/10.1021/jacs.7b10204

  3. Bethe H (1929) Annalen der Physik 395(2):133. https://doi.org/10.1002/andp.19293950202

  4. Miessler GL, Fischer PJ, Tarr DA, (2014) Inorg Chem. Pearson

    Google Scholar 

  5. Barteau MA (1996) Chem Rev 96(4):1413. https://doi.org/10.1021/cr950222t

  6. Hohenberg P, Kohn W (1964) Phys Rev 136(3B):B864 (1964). https://link.aps.org/doi/10.1103/PhysRev.136.B864

  7. Kohn W, Sham LJ (1965) Phys Rev 140(4A):A1133. https://doi.org/10.1103/PhysRev.140.A1133. https://link.aps.org/doi/10.1103/PhysRev.140.A1133

  8. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45(7):566. http://escholarship.org/uc/item/2d7023jm.pdf

  9. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865

  10. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):7413. https://link.aps.org/doi/10.1103/PhysRevB.59.7413

  11. Becke AD (1993) J Chem Phys 98(7):5648. https://doi.org/10.1063/1.464913https://doi.org/10.1063/1.464913

  12. Hood RQ, Chou M, Williamson A, Rajagopal G, Needs R (1998) Phys Rev B Condens Matter Mater Phys 57(15):8972. https://doi.org/10.1103/PhysRevB.57.8972. https://link.aps.org/doi/10.1103/PhysRevB.57.8972

  13. Jones RO (2006) In: Grotendorst J, Blügel, Marx D (eds) Computational nanoscience: do it yourself! (John von Neumann Institute for Computing, Jülich 2006), Chap 31, pp 45–70. https://doi.org/10.1007/978-3-642-86105-5

  14. Dreizler RM, Gross EKU (1990) Density functional theory. Springer. https://doi.org/10.1007/978-3-642-86105-5. https://link.springer.com/book/10.1007/978-3-642-86105-5

  15. Sodupe M, Bertran J, Rodriguez-Santiago L, Baerends EJ (1999) J Phys Chem A 103(1):166. https://doi.org/10.1021/jp983195u

  16. de I, Moreira PR, Illas F, Martin RL (2002) Phys Rev B Condens Matter Mater Phys 65(15):1551021. https://doi.org/10.1103/PhysRevB.65.155102. https://link.aps.org/doi/10.1103/PhysRevB.65.155102

  17. Austin IG, Mott NF (1970) Science 168(3927):71. https://doi.org/10.1126/science.168.3927.71. http://www.sciencemag.org/cgi/doi/10.1126/science.168.3927.71

  18. Himmetoglu B, Floris A, De Gironcoli S, Cococcioni M (2014) Int J Quantum Chem 114(1):14. http://doi.wiley.com/10.1002/qua.24521

  19. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44(3):943. https://link.aps.org/doi/10.1103/PhysRevB.44.943

  20. Anisimov VI, Aryasetiawan F, Liechtenstein A (1997) J Phys Condens Matter 9(4):767. https://doi.org/10.1088/0953-8984/9/4/002. http://stacks.iop.org/0953-8984/9/i=4/a=002?key=crossref.fb949d5eca1b7900b10858389e3ab0c7

  21. Cococcioni M (2012) In: Pavarini E, Koch E, Anders F, Jarrell M (eds) Correlated electrons: from models to materials modeling and simulation, Chap. 4. Forschungszentrum, Juelich, p. 40. http://www.cond-mat.de/events/correl12

  22. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57(3):1505. https://doi.org/10.1103/PhysRevB.57.1505. https://link.aps.org/doi/10.1103/PhysRevB.57.1505

  23. Faber C, Boulanger P, Duchemin I, Attaccalite C, Blase X (2013) J Chem Phys 139(19):194308. https://doi.org/10.1063/1.4830236. https://doi.org/10.1063/1.4830236

  24. Aryasetiawan F, Gunnarsson O (1998) Rep Prog Phys 61(3):237 (1998). http://stacks.iop.org/0034-4885/61/i=3/a=002

  25. Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75(3):35115. https://doi.org/10.1103/PhysRevB.75.035115. http://reichling.physik.uos.de/download_paper.php?paper=PhysRevB75p035115(2007)_Loschen.pdf%5Cn%3CGotoISI%3E://000243895400048

  26. Loschen C, Carrasco J, Neyman KM, Illas F (2011) Phys Rev B 84:199906. https://doi.org/10.1103/PhysRevB.75.035115

  27. Da Silva JL, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B Condens Matter Mater Phys 75(4):45121. https://doi.org/10.1103/PhysRevB.75.045121. https://link.aps.org/doi/10.1103/PhysRevB.75.045121

  28. Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102(2):026101. https://doi.org/10.1103/PhysRevLett.102.026101. https://link.aps.org/doi/10.1103/PhysRevLett.102.026101

  29. Jiang H, Gomez-Abal RI, Rinke P, Scheffler M (2009) Phys Rev Lett 102(12):126403. https://doi.org/10.1103/PhysRevLett.102.126403. http://link.aps.org/doi/10.1103/PhysRevLett.102.126403

  30. Pacchioni G (2015) In: Jupille J, Thornton G (eds) Defects at oxide surfaces. Chap 1.3 Proble, Springer series in surface sciences, vol 58. Springer International Publishing, Cham, p 472. https://doi.org/10.1007/978-3-319-14367-5. https://link.springer.com/book/10.1007/978-3-319-14367-5

  31. Runge E, Gross EKU (1984) Phys Rev Lett 52(12):997. https://doi.org/10.1103/PhysRevLett.52.997. https://link.aps.org/doi/10.1103/PhysRevLett.52.997

  32. Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU, (2006) Time-dependent density functional theory. Lecture notes in physics, vol 706. Springer, Heidelberg. https://doi.org/10.1007/b11767107. http://link.springer.com/10.1007/b11767107

  33. Casida ME, Huix-Rotllant M (2015) Springer International Publishing, Cham pp 1–60. https://doi.org/10.1007/128_2015_632. https://link.springer.com/chapter/10.1007/128_2015_632

  34. Wu X, Vargas MC, Nayak S (2001) J Chem Phys 115(19):8748. https://doi.org/10.1063/1.1412004. https://doi.org/10.1063/1.1412004

  35. Grimme S (2004) J Computat Chem 25(12):1463. https://doi.org/10.1002/jcc.20078. http://doi.wiley.com/10.1002/jcc.20078

  36. Grimme S (2006) J Computat Chem 27(15):1787. https://doi.org/10.1002/jcc.20495. http://doi.wiley.com/10.1002/jcc.20495

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344. https://doi.org/10.1063/1.3382344

  38. Smith DGA, Burns LA, Patkowski K, Sherrill CD (2016) J Phys Chem Lett 7(12):2197. https://doi.org/10.1021/acs.jpclett.6b00780. https://doi.org/10.1021/acs.jpclett.6b00780

  39. Reckien W, Janetzko F, Peintinger MF, Bredow T (2012) J Comput Chem 33(25):2023. https://doi.org/10.1002/jcc.23037. https://onlinelibrary.wiley.com/doi/10.1002/jcc.23037

  40. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92(24):246401. https://doi.org/10.1103/PhysRevLett.92.246401. https://link.aps.org/doi/10.1103/PhysRevLett.92.246401

  41. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2005) Phys Rev Lett 95(10), 109902. https://link.aps.org/doi/10.1103/PhysRevLett.95.109902

  42. Klimes J, Bowler DR, Michaelides A (2011) Phys Rev B Condens Matter Mater Phys 83(19):195131. https://doi.org/10.1103/PhysRevB.83.195131. https://link.aps.org/doi/10.1103/PhysRevB.83.195131

  43. Santra B, Michaelides A, Fuchs M, Tkatchenko A, Filippi C, Scheffler M (2008) J Chem Phys 129(19):194111 https://doi.org/10.1063/1.3012573. https://doi.org/10.1063/1.3012573

  44. Gulans A, Puska M, Nieminen R (2009) Phys Rev B 79(20):201105. https://doi.org/10.1103/PhysRevB.79.201105. https://link.aps.org/doi/10.1103/PhysRevB.79.201105

  45. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C, Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, van Duin ACT (2016) NPJ Comput Mater 2(1):15011. https://doi.org/10.1038/npjcompumats.2015.11. http://www.nature.com/articles/npjcompumats201511

  46. Lid S, Köppen S, Colombi Ciacchi L (2017) Comput Mater Sci 140:307. https://doi.org/10.1016/j.commatsci.2017.09.003. https://www.sciencedirect.com/science/article/pii/S0927025617304731

  47. Maseras F, Morokuma K (1995) J Comput Chem 16(9):1170. https://doi.org/10.1002/jcc.540160911. http://doi.wiley.com/10.1002/jcc.540160911

  48. Humbel S, Sieber S, Morokuma K (1998) J Chem Phys 105(5):1959. https://doi.org/10.1063/1.472065. https://aip.scitation.org/doi/abs/10.1063/1.472065

  49. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100(50):19357. https://doi.org/10.1021/jp962071j. http://pubs.acs.org/doi/abs/10.1021/jp962071j

  50. Sauer J, Sierka M (2000) J Comput Chem 21(16):1470. https://doi.org/10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L. http://doi.wiley.com/10.1002/1096-987X%28200012%2921%3A16%3C1470%3A%3AAID-JCC5%3E3.0.CO%3B2-L

  51. Boys SF (1950) Proc R Soc Lond Ser A Math Phys Sci 200(1063):542 LP. http://rspa.royalsocietypublishing.org/content/200/1063/542.abstract

  52. Huzinaga S (1984) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

    Google Scholar 

  53. Slater JC (1930) Phys Rev 36(1):57. https://doi.org/10.1103/PhysRev.36.57. https://link.aps.org/doi/10.1103/PhysRev.36.57

  54. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) J Comput Chem 22(9):931. https://doi.org/10.1002/jcc.1056. http://doi.wiley.com/10.1002/jcc.1056

  55. Delley B (2000) J Chem Phys 113(18):7756. https://doi.org/10.1063/1.1316015. https://doi.org/10.1063/1.1316015

  56. Wannier GH (1937) Phys Rev 52(x):191. https://doi.org/10.1103/PhysRev.52.191. https://link.aps.org/doi/10.1103/PhysRev.52.191

  57. Mostofi AA, Yates JR, Pizzi G, Lee YS, Souza I, Vanderbilt D, Marzari N (2014) Comput Phys Commun 185(8):2309. https://doi.org/10.1016/j.cpc.2014.05.003. https://www.sciencedirect.com/science/article/pii/S001046551400157X?via%3Dihub

  58. Blöchl PE (1994) Phys Rev B 50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953. https://link.aps.org/doi/10.1103/PhysRevB.50.17953

  59. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):035109. https://doi.org/10.1103/PhysRevB.71.035109. https://link.aps.org/doi/10.1103/PhysRevB.71.035109

  60. Murnaghan FD (1944) Proc Natl Acad Sci 30(9):244. https://doi.org/10.1073/pnas.30.9.244. http://www.pnas.org/cgi/doi/10.1073/pnas.30.9.244

  61. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  62. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36(3):354. https://doi.org/10.1016/J.COMMATSCI.2005.04.010. https://www.sciencedirect.com/science/article/pii/S0927025605001849

  63. Manz TA, Limas NG (2016) RSC Adv 6(53):47771. https://doi.org/10.1039/C6RA04656H. http://dx.doi.org/10.1039/C6RA04656H

  64. Limas NG, Manz TA (2016) RSC Adv 6(51):45727. https://doi.org/10.1039/C6RA05507A. http://dx.doi.org/10.1039/C6RA05507A

  65. Manz TA (2017) RSC Adv 7(72):45552. https://doi.org/10.1039/C7RA07400J. http://xlink.rsc.org/?DOI=C7RA07400J

  66. Kerisit S, Rosso KM, Yang Z, Liu J (2010) J Phys Chem C 114(44):19096. https://doi.org/10.1021/jp103809s. http://pubs.acs.org/doi/10.1021/jp103809s

  67. Arsentev M, Hammouri M, Kovalko N, Kalinina M, Petrov A (2017) Comput Mater Sci 140:181. https://doi.org/10.1016/J.COMMATSCI.2017.08.045. https://www.sciencedirect.com/science/article/pii/S0927025617304676

  68. Tersoff J, Hamann DR (1985) Phys Rev B 31(2):805. https://doi.org/10.1103/PhysRevB.31.805. https://link.aps.org/doi/10.1103/PhysRevB.31.805

  69. Bardeen J (1961) Phys Rev Lett 6(2):57. https://doi.org/10.1103/PhysRevLett.6.57. https://link.aps.org/doi/10.1103/PhysRevLett.6.57

  70. Godlewski S, Tekiel A, Piskorz W, Zasada F, Prauzner-Bechcicki JS, Sojka Z, Szymonski M (2012) ACS Nano 6(10):8536. https://doi.org/10.1021/nn303546m

  71. Hofer WA, Foster AS, Shluger AL (2003) Rev Mod Phys 75(4):1287. https://doi.org/10.1103/RevModPhys.75.1287. https://link.aps.org/doi/10.1103/RevModPhys.75.1287

  72. Wulff G (1901) Zeitschrift für Krystallographie und Mineralogie 34(5/6):449

    Google Scholar 

  73. Reuter K, Scheffler M (2003) Phys Rev B Condens Matter Mater Phys 68(4):045407. https://doi.org/10.1103/PhysRevB.68.045407. https://link.aps.org/doi/10.1103/PhysRevB.68.045407

  74. Geysermans P, Finocchi F, Goniakowski J, Hacquart R, Jupille J (2009) Phys Chem Chem Phys 11(13):2228. https://doi.org/10.1039/b812376d. http://xlink.rsc.org/?DOI=b812376d

  75. Zhang CH, Chen B, Jin Y, Sun DB (2017) J Phys Chem Solids 110:129. https://doi.org/10.1016/j.jpcs.2017.06.006. https://www.sciencedirect.com/science/article/pii/S0022369717300525

  76. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) J Chem Phys 140(8):84106. https://doi.org/10.1063/1.4865107. https://doi.org/10.1063/1.4865107

  77. Letchworth-Weaver K, Arias TA (2012) Phys Rev B Condens Matter Mater Phys 86(7):75140. https://doi.org/10.1103/PhysRevB.86.075140. https://link.aps.org/doi/10.1103/PhysRevB.86.075140

  78. Piskorz W, Zasada F, Stelmachowski P, Diwald O, Kotarba A, Sojka Z (2011) J Phys Chem C 115(45):22451. https://doi.org/10.1021/jp2070826

  79. Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2013) J Phys Chem C 117(36):18488. https://doi.org/10.1021/jp405459g

  80. Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G (2017) ACS Catal 7(10):6493. https://doi.org/10.1021/acscatal.7b01913. https://doi.org/10.1021/acscatal.7b01913

  81. Paier J, Penschke C, Sauer J (2013) Chem Rev 113(6):3949. https://doi.org/10.1021/cr3004949. https://doi.org/10.1021/cr3004949

  82. Mars P, van Krevelen D (1954) Chem Eng Sci 3:41. https://doi.org/10.1016/S0009-2509(54)80005-4. https://www.sciencedirect.com/science/article/pii/S0009250954800054

  83. Zasada F, Janas J, Piskorz W, Sojka Z (2017) Res Chem Intermed 43(5):2865. https://doi.org/10.1007/s11164-016-2798-y

  84. Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials, 2nd edn. Imperial College Press, London

    Google Scholar 

  85. Grasselli RK (2002) Topics Catal 21(1):79. https://doi.org/10.1023/A:1020556131984. https://doi.org/10.1023/A:1020556131984

  86. Huang W, Gao Y (2014) Catal Sci Technol 4(11):3772. https://doi.org/10.1039/C4CY00679H. http://dx.doi.org/10.1039/C4CY00679H

  87. Trovarelli A (1996) Catal Rev 38(4):439. https://doi.org/10.1080/01614949608006464. http://www.tandfonline.com/doi/abs/10.1080/01614949608006464

  88. Yao HC, Yao YF (1984) J Catal 86(2):254. https://doi.org/10.1016/0021-9517(84)90371-3

  89. Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216(1–2):433. https://doi.org/10.1016/S0021-9517(02)00067-2. https://www.sciencedirect.com/science/article/pii/S0021951702000672?via%3Dihub

  90. Mullins DR (2015) Surf Sci Rep 70(1):42. https://doi.org/10.1016/j.surfrep.2014.12.001. https://www.sciencedirect.com/science/article/pii/S016757291400034X#bib4

  91. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301(5635):935. https://doi.org/10.1126/science.1085721

  92. Deng W, Flytzani-Stephanopoulos M (2006) Angew Chem Int Edn 45(14):2285. https://doi.org/10.1002/anie.200503220. http://dx.doi.org/10.1002/anie.200503220

  93. Yu EH, Wang X, Liu XT, Li L (2013) In: Liang ZX, Zhao TS (eds) Catalysts for alcohol-fuelled direct oxidation fuel cells. Energy and environment series. The Royal Society of Chemistry, Cambridge, pp 227–249. https://doi.org/10.1039/9781849734783. http://dx.doi.org/10.1039/9781849734783

  94. Park S, Vohs JM, Gorte RJ (2000) Nature 404(6775):265. https://doi.org/10.1038/35005040

  95. Delgado JJ, del Río E, Chen X, Blanco G, Pintado JM, Bernal S, Calvino JJ (2013) In: Trovarelli A, Fornasiero P 2nd (edn) Catalysis by ceria and related materials. Imperial College Press, pp 47–138

    Google Scholar 

  96. Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O (2003) Annu Rev Mater Res 33(1):1. https://doi.org/10.1146/annurev.matsci.33.022802.091348. http://www.annualreviews.org/doi/10.1146/annurev.matsci.33.022802.091348

  97. Heck RM, Farrauto RJ (2001) Appl Catal A Gen 221(1–2):443. https://doi.org/10.1016/S0926-860X(01)00818-3. https://www.sciencedirect.com/science/article/pii/S0926860X01008183

  98. Capdevila-Cortada M, Vilé G, Teschner D, Pérez-Ramírez J, López N (2016) Appl Catal B Environ 197:299. https://doi.org/10.1016/j.apcatb.2016.02.035. https://www.sciencedirect.com/science/article/pii/S0926337316301242

  99. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press

    Google Scholar 

  100. Xiong YP, Kishimoto H, Yamaji K, Yoshinaga M, Horita T, Brito ME, Yokokawa H (2011) Solid State Ion 192(1):476. https://doi.org/10.1016/j.ssi.2010.07.017. https://www.sciencedirect.com/science/article/pii/S0167273810004157

  101. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surface Sci Rep 62(6):219. https://doi.org/10.1016/j.surfrep.2007.03.002. https://www.sciencedirect.com/science/article/pii/S0167572907000295

  102. Sayle TXT, Parker SC, Catlow CRA (1994) Surface Sci 316(3):329. https://doi.org/10.1016/0039-6028(94)91225-4. https://www.sciencedirect.com/science/article/pii/0039602894912254

  103. Yang Z, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120(16):7741. https://doi.org/10.1063/1.1688316. http://aip.scitation.org/doi/10.1063/1.1688316

  104. Mogensen M, Sammes NM, Tompsett GA (2000) Solid State Ion 129(1):63. https://doi.org/10.1016/S0167-2738(99)00318-5

  105. Nolan M, Parker SC, Watson GW (2005) Surf Sci 595(1–3):223. https://doi.org/10.1016/j.susc.2005.08.015. https://www.sciencedirect.com/science/article/pii/S003960280500926X?via%3Dihub

  106. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R (2005) Science 309(5735):752 LP. http://science.sciencemag.org/content/309/5735/752.abstract

  107. Aneggi E, Llorca J, Boaro M, Trovarelli A (2005) J Catal 234(1):88. https://doi.org/10.1016/J.JCAT.2005.06.008. https://www.sciencedirect.com/science/article/pii/S0021951705002435

  108. Désaunay T, Bonura G, Chiodo V, Freni S, Couzinié JP, Bourgon J, Ringuedé A, Labat F, Adamo C, Cassir M (2013) J Catal 297:193. https://doi.org/10.1016/J.JCAT.2012.10.011. https://www.sciencedirect.com/science/article/pii/S0021951712003247

  109. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109(51):24380. https://doi.org/10.1021/jp055584b. https://doi.org/10.1021/jp055584b

  110. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89(16):166601/1. https://doi.org/10.1103/PhysRevLett.89.166601. https://link.aps.org/doi/10.1103/PhysRevLett.89.166601

  111. Binet C, Daturi M, Lavalley JC (1999) Catal Today 50(2):207. https://doi.org/10.1016/S0920-5861(98)00504-5. https://www.sciencedirect.com/science/article/pii/S0920586198005045?via%3Dihub

  112. Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A (2010) J Mater Sci 45(15):4163. https://doi.org/10.1007/s10853-010-4506-4. https://doi.org/10.1007/s10853-010-4506-4

  113. Weckhuysen BM, Keller DE (2003) Catal Today 78(1-4 SPEC):25. https://doi.org/10.1016/S0920-5861(02)00323-1. https://www.sciencedirect.com/science/article/pii/S0920586102003231?via%3Dihub

  114. Berner U, Schierbaum K, Jones G, Wincott P, Haq S, Thornton G (2000) Surf Sci 467(1–3):201. https://doi.org/10.1016/S0039-6028(00)00770-6. https://www.sciencedirect.com/science/article/pii/S0039602800007706

  115. Fujimori A (1983) Phys Rev B 28(4):2281. https://doi.org/10.1103/PhysRevB.28.2281. https://link.aps.org/doi/10.1103/PhysRevB.28.2281

  116. Kotani A, Mizuta H, Jo T, Parlebas J (1985) Solid State Commun 53(9):805. https://doi.org/10.1016/0038-1098(85)90223-6. https://www.sciencedirect.com/science/article/pii/0038109885902236?via%3Dihub

  117. Wuilloud E, Delley B, Schneider WD, Baer Y (1984) Phys Rev Lett 53(2):202. https://doi.org/10.1103/PhysRevLett.53.202. https://link.aps.org/doi/10.1103/PhysRevLett.53.202

  118. Marabelli F, Wachter P (1987) Phys Rev B 36(2):1238. http://link.aps.org/doi/10.1103/PhysRevB.36.1238

  119. Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123(6):064701. https://doi.org/10.1063/1.1949189. http://aip.scitation.org/doi/10.1063/1.1949189

  120. Nörenberg H, Briggs G (1999) Surf Sci 424(2–3):L352. https://doi.org/10.1016/S0039-6028(99)00212-5. https://www.sciencedirect.com/science/article/pii/S0039602899002125

  121. Nörenberg H, Briggs G (1999) Surf Sci 433–435:127. https://doi.org/10.1016/S0039-6028(99)00070-9. https://www.sciencedirect.com/science/article/pii/S0039602899000709

  122. Nörenberg H, Harding J (2001) Surf Sci 477(1):17. https://doi.org/10.1016/S0039-6028(01)00700-2. https://www.sciencedirect.com/science/article/pii/S0039602801007002

  123. Trovarelli A, Llorca J (2017) ACS Catal 7(7):4716. https://doi.org/10.1021/acscatal.7b01246. http://pubs.acs.org/doi/10.1021/acscatal.7b01246

  124. Fronzi M, Soon A, Delley B, Traversa E, Stampfl C (2009) J Chem Phys 131(10):104701. https://doi.org/10.1063/1.3191784. https://aip.scitation.org/doi/abs/10.1063/1.3191784

  125. Gerward L, Olsen JS (1993) Powder Diffraction 8(02):127. https://doi.org/10.1017/S0885715600017966. http://www.journals.cambridge.org/abstract_S0885715600017966

  126. Gerward L, Staun Olsen J, Petit L, Vaitheeswaran G, Kanchana V, Svane A (2005) J Alloys Compd 400(1–2):56. https://doi.org/10.1016/J.JALLCOM.2005.04.008. https://www.sciencedirect.com/science/article/pii/S0925838805003403

  127. Kaneko K, Inoke K, Freitag B, Hungria AB, Midgley PA, Hansen TW, Zhang J, Ohara S, Adschiri T (2007) Nano Lett 7(2):421. https://doi.org/10.1021/nl062677b. https://pubs.acs.org/doi/abs/10.1021/nl062677bpubs.acs.org/doi/abs/10.1021/nl062677b

  128. Ren Z, Liu N, Chen B, Li J, Mei D (2018) J Phys Chem C 122(9):4828. https://doi.org/10.1021/acs.jpcc.7b10208. http://pubs.acs.org/doi/10.1021/acs.jpcc.7b10208

  129. Chen C, Chen HL, Weng MH, Ju SP, Chang JG, Chang CS (2008) Chin J Catal 29(11):1117. https://doi.org/10.1016/S1872-2067(09)60011-5. http://linkinghub.elsevier.com/retrieve/pii/S1872206709600115

  130. Burow AM, Wende T, Sierka M, Włodarczyk R, Sauer J, Claes P, Jiang L, Meijer G, Lievens P, Asmis KR (2011) Phys Chem Chem Phys 13(43):19393. https://doi.org/10.1039/c1cp22129a. http://xlink.rsc.org/?DOI=c1cp22129a

  131. Nagata T, Miyajima K, Hardy RA, Metha GF, Mafuné F (2015) J Phys Chem A 119(22):5545. https://doi.org/10.1021/acs.jpca.5b02816. http://pubs.acs.org/doi/10.1021/acs.jpca.5b02816

  132. Fernández-Torre D, Kośmider K, Carrasco J, Ganduglia-Pirovano MV, Pérez R (2012) J Phys Chem C 116(25):13584. https://doi.org/10.1021/jp212605g. http://pubs.acs.org/doi/10.1021/jp212605g

  133. Marrocchelli D, Yildiz B (2012) J Phys Chem C 116(3):2411. https://doi.org/10.1021/jp205573v. http://pubs.acs.org/doi/10.1021/jp205573v

  134. Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T (2001) Solid State Ion 140(3–4):191. https://doi.org/10.1016/S0167-2738(01)00854-2. https://www.sciencedirect.com/science/article/pii/S0167273801008542

  135. Ricken M, Nölting J, Riess I (1984) J Solid State Chem 54(1):89. 10.1016/0022-4596(84)90135-X. https://www.sciencedirect.com/science/article/pii/002245968490135X

  136. Kümmerle E, Heger G (1999) J Solid State Chem 147(2):485. https://doi.org/10.1006/JSSC.1999.8403. https://www.sciencedirect.com/science/article/pii/S0022459699984037

  137. Hull S, Norberg S, Ahmed I, Eriksson S, Marrocchelli D, Madden P (2009) J Solid State Chem 182(10):2815. https://doi.org/10.1016/J.JSSC.2009.07.044. https://www.sciencedirect.com/science/article/pii/S0022459609003545

  138. Perrichon V, Laachir A, Bergeret G, Frety R, Tournayan L, Touret O (1994) J Chem Soc Faraday Trans 90(5):773. https://doi.org/10.1039/FT9949000773. http://dx.doi.org/10.1039/FT9949000773

  139. Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) Surf Interf Anal 20(6):508. https://doi.org/10.1002/sia.740200604. http://doi.wiley.com/10.1002/sia.740200604

  140. Pfau A, Schierbaum K (1994) Surf Sci 321(1–2):71. https://doi.org/10.1016/0039-6028(94)90027-2. https://www.sciencedirect.com/science/article/pii/0039602894900272

  141. Mullins D, Overbury S, Huntley D (1998) Surf Sci 409(2):307. https://doi.org/10.1016/S0039-6028(98)00257-X. https://www.sciencedirect.com/science/article/pii/S003960289800257X

  142. Binet C, Badri A, Lavalley JC (1994) J Phys Chem 98(25):6392. https://doi.org/10.1021/j100076a025. http://pubs.acs.org/doi/abs/10.1021/j100076a025

  143. Soria J, Martínez-Arias A, Conesa JC (1995) J Chem Soc Faraday Trans 91(11):1669. https://doi.org/10.1039/FT9959101669. http://xlink.rsc.org/?DOI=FT9959101669

  144. Namai Y, Fukui KI, Iwasawa Y (2003) J Phys Chem B 107(42):11666. https://doi.org/10.1021/jp030142q. http://pubs.acs.org/doi/abs/10.1021/jp030142q

  145. Fabris S, Vicario G, Balducci G, de Gironcoli S, Baroni S (2005) J Phys Chem B 109(48):22860. https://doi.org/10.1021/jp0511698. http://pubs.acs.org/doi/abs/10.1021/jp0511698

  146. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576(1–3):217. https://doi.org/10.1016/J.SUSC.2004.12.016. https://www.sciencedirect.com/science/article/pii/S0039602804015651

  147. Huang M, Fabris S (2008) J Phys Chem C 112(23):8643. https://doi.org/10.1021/jp709898r

  148. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) J Mater Chem 20(46):10535. https://doi.org/10.1039/C0JM01908A. http://dx.doi.org/10.1039/C0JM01908A

  149. Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704. https://doi.org/10.1063/1.2800015

  150. Panhans MA, Blumenthal RN (1993) Solid State Ion 60(4):279. https://doi.org/10.1016/0167-2738(93)90006-O. https://www.sciencedirect.com/science/article/abs/pii/016727389390006O

  151. Nolan M, Fearon J, Watson G (2006) Solid State Ion 177(35–36):3069. https://doi.org/10.1016/j.ssi.2006.07.045. http://linkinghub.elsevier.com/retrieve/pii/S0167273806004528

  152. Tuller HL, Nowick AS (1979) J Electrochem Soc 126(2):209. https://doi.org/10.1149/1.2129007. http://jes.ecsdl.org/cgi/doi/10.1149/1.2129007

  153. Choi YM, Abernathy H, Chen HT, Lin MC, Liu M (2006) Chem Phys Chem 7(9):1957. https://doi.org/10.1002/cphc.200600190. http://doi.wiley.com/10.1002/cphc.200600190

  154. Huang M, Fabris S (2007) Phys Rev B Condensed Matter Materials Physics 75(8):081404. https://doi.org/10.1103/PhysRevB.75.081404. https://link.aps.org/doi/10.1103/PhysRevB.75.081404

  155. Li HY, Wang HF, Gong XQ, Guo YL, Guo Y, Lu G, Hu P (2009) Phys Rev B 79(19):193401. https://doi.org/10.1103/PhysRevB.79.193401. https://link.aps.org/doi/10.1103/PhysRevB.79.193401

  156. Stangeland K, Kalai D, Yu Z (2017) Energy Procedia 105:2022. https://doi.org/10.1016/J.EGYPRO.2017.03.577. https://www.sciencedirect.com/science/article/pii/S187661021730629X

  157. Burch R (2006) Phys Chem Chem Phys 8(47):5483. https://doi.org/10.1039/B607837K. http://dx.doi.org/10.1039/B607837K

  158. Hinrichsen KO, Kochloefl K, Muhler M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J Handbook of heterogeneous catalysis, 2nd edn, Chap. 13.12. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 2905–2920

    Google Scholar 

  159. Bruix A, Rodriguez JA, Ramírez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) J Am Chem Soc 134(21):8968. https://doi.org/10.1021/ja302070k. http://pubs.acs.org/doi/10.1021/ja302070k

  160. Flaherty DW, Yu WY, Pozun ZD, Henkelman G, Mullins CB (2011) J Catal 282(2):278. https://doi.org/10.1016/J.JCAT.2011.06.024. https://www.sciencedirect.com/science/article/pii/S0021951711002223

  161. Tang C, Zhang H, Dong L (2016) Catal Sci Technol 6(5):1248. https://doi.org/10.1039/C5CY01487E. http://xlink.rsc.org/?DOI=C5CY01487E

  162. Yang Z, Woo TK, Hermansson K (2006) Surf Sci 600(22):4953. https://doi.org/10.1016/J.SUSC.2006.08.018. https://www.sciencedirect.com/science/article/pii/S0039602806008867?via%3Dihub

  163. Zhang J, Gong XQ, Lu G (2014) Phys Chem Chem Phys 16(32):16904. https://doi.org/10.1039/C4CP02235A. http://xlink.rsc.org/?DOI=C4CP02235A

  164. Nolan M (2009) J Phys Chem C 113(6):2425. https://doi.org/10.1021/jp809292u. http://pubs.acs.org/doi/10.1021/jp809292u

  165. Luo MF, Zhong YJ, Zhu B, Yuan XX, Zheng XM (1997) Appl Surf Sci 115(2):185. https://doi.org/10.1016/S0169-4332(97)80203-6. https://www.sciencedirect.com/science/article/pii/S0169433297802036?via%3Dihub

  166. Nolan M, Parker SC, Watson GW (2006) J Phys Chem B 110(5):2256. https://doi.org/10.1021/jp055624b. https://pubs.acs.org/doi/abs/10.1021/jp055624bpubs.acs.org/doi/abs/10.1021/jp055624b

  167. Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278(2):297. https://doi.org/10.1016/J.JCAT.2010.12.015. https://www.sciencedirect.com/science/article/pii/S0021951710004446

  168. Qi K, Zasada F, Piskorz W, Indyka P, Gryboś J, Trochowski M, Buchalska M, Kobielusz M, Macyk W, Sojka Z (2016) J Phys Chem C 120(10):5442. https://doi.org/10.1021/acs.jpcc.5b10983

  169. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2010) Nano Lett 10(2):750. https://doi.org/10.1021/nl903742x. http://pubs.acs.org/doi/abs/10.1021/nl903742x

  170. Kisch H (2014) Semiconductor photocatalysis: principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/9783527673315. http://doi.wiley.com/10.1002/9783527673315

  171. Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P (2010) Appl Catal B Environ 100(1–2):386. https://doi.org/10.1016/j.apcatb.2010.08.015. https://www.sciencedirect.com/science/article/pii/S0926337310003681

  172. Grätzel M (2003) J Photochem Photobiol C Photochem Rev 4(2):145. https://doi.org/10.1016/S1389-5567(03)00026-1. https://www.sciencedirect.com/science/article/pii/S1389556703000261?via%3Dihub

  173. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Renewable and sustainable energy reviews 68:234. https://doi.org/10.1016/j.rser.2016.09.097. https://www.sciencedirect.com/science/article/pii/S1364032116305883

  174. Richhariya G, Kumar A, Tekasakul P, Gupta B (2017) Renewable and sustainable energy reviews 69:705. https://doi.org/10.1016/J.RSER.2016.11.198. https://www.sciencedirect.com/science/article/pii/S1364032116309571

  175. Grätzel M (2001) Nature 414:338. https://doi.org/10.1038/35104607. https://doi.org/10.0.4.14/35104607

  176. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) J Electroanal Chem 396(1–2):21. https://doi.org/10.1016/0022-0728(95)04141-A. https://www.sciencedirect.com/science/article/pii/002207289504141A?via%3Dihub

  177. Diebold U (2003) Surf Sci Rep 48(5–8):53. https://doi.org/10.1016/S0167-5729(02)00100-0. http://linkinghub.elsevier.com/retrieve/pii/S0167572902001000

  178. Hagfeldt A, Lunell S, Sieghbahn HOG (1994) Int J Quantum Chem 49(2):97. https://doi.org/10.1002/qua.560490205. http://doi.wiley.com/10.1002/qua.560490205

  179. Huang CN, Bow JS, Zheng Y, Chen SY, Ho NJ, Shen P (2010) Nanoscale Res Lett 5(6):972. https://doi.org/10.1007/s11671-010-9591-4. http://www.nanoscalereslett.com/content/5/6/972

  180. Tsipis AC, Tsipis CA (1999) Phys Chem Chem Phys 1(18):4453. https://doi.org/10.1039/a904269e. http://xlink.rsc.org/?DOI=a904269e

  181. Albaret T, Finocchi F, Noguera C (1999) Faraday Discuss 114:285. https://doi.org/10.1039/a903066b. http://xlink.rsc.org/?DOI=a903066b

  182. Matsuda Y, Bernstein ER (2005) J Phys Chem A 109(2):314. https://doi.org/10.1021/jp040670h. http://pubs.acs.org/doi/abs/10.1021/jp040670h

  183. Zhai HJ, Wang LS (2007) J Am Chem Soc 129(10):3022. https://doi.org/10.1021/ja068601z. http://pubs.acs.org/doi/abs/10.1021/ja068601z

  184. Albaret T, Finocchi F, Noguera C (2000) J Chem Phys 113(6):2238. https://doi.org/10.1063/1.482038. http://aip.scitation.org/doi/10.1063/1.482038

  185. Yu X, Oganov AR, Popov IA, Qian G, Boldyrev AI (2016) Angew Chem Int Edn 55(5):1699. https://doi.org/10.1002/anie.201508439. http://doi.wiley.com/10.1002/anie.201508439

  186. Morales-García Á, Valero R, Illas F (2017) J Chem Theory Comput 13(8):3746. https://doi.org/10.1021/acs.jctc.7b00308. http://pubs.acs.org/doi/10.1021/acs.jctc.7b00308

  187. Berardo E, Kaplan F, Bhaskaran-Nair K, Shelton WA, van Setten MJ, Kowalski K, Zwijnenburg MA (2017) J Chem Theory Comput 13(8):3814. https://doi.org/10.1021/acs.jctc.7b00538. http://pubs.acs.org/doi/10.1021/acs.jctc.7b00538

  188. Kolmer M, Ahmad Zebari AA, Goryl M, Buatier De Mongeot F, Zasada F, Piskorz W, Pietrzyk P, Sojka Z, Krok F, Szymonski M Phys Rev B Condens Matter Mater Phys 88(19). https://doi.org/10.1103/PhysRevB.88.195427

  189. Labat F, Baranek P, Domain C, Minot C, Adamo C (2007) J Chem Phys 126(15):154703. https://doi.org/10.1063/1.2717168. http://aip.scitation.org/doi/10.1063/1.2717168

  190. Futera Z, English NJ (2017) J Phys Chem C 121(12):6701. https://doi.org/10.1021/acs.jpcc.6b12803. http://pubs.acs.org/doi/10.1021/acs.jpcc.6b12803

  191. Goniakowski J, Gillan MJ (1995) Surf Sci 350(1–3):145. https://doi.org/10.1016/0039-6028(95)01252-4. http://arxiv.org/abs/mtrl-th/9508009%0Adx.doi.org/10.1016/0039-6028(95)01252-4

  192. Stefanovich EV, Truong TN (1999) Chem Phys Lett 299(6):623. https://doi.org/10.1016/S0009-2614(98)01295-0. https://www.sciencedirect.com/science/article/pii/S0009261498012950

  193. Bandura AV, Sykes DG, Shapovalov V, Troung TN, Kubicki JD, Evarestov RA (2004) J Phys Chem B 108(23):7844. https://doi.org/10.1021/jp037141i. https://pubs.acs.org/doi/abs/10.1021/jp037141ipubs.acs.org/doi/abs/10.1021/jp037141i

  194. Langel W (2002) Surf Sci 496(1–2):141. https://doi.org/10.1016/S0039-6028(01)01606-5. https://www.sciencedirect.com/science/article/pii/S0039602801016065

  195. Nadeem IM, Harrison GT, Wilson A, Pang CL Zegenhagen J Thornton G (2017) J Phys Chem B 122(2). https://doi.org/10.1021/acs.jpcb.7b06955. http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b06955

  196. Pang CL, Lindsay R, Thornton G (2008) Chem Soc Rev 37(10):2328. https://doi.org/10.1039/b719085a. http://xlink.rsc.org/?DOI=b719085a

  197. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlström E, Rasmussen MD, Thostrup P, Molina LM, Lægsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598(1–3):226. https://doi.org/10.1016/j.susc.2005.08.041. https://www.sciencedirect.com/science/article/pii/S0039602805010629?via%3Dihub

  198. Morgan BJ, Watson GW (2007) Surf Sci 601(21):5034. https://doi.org/10.1016/j.susc.2007.08.025. https://www.sciencedirect.com/science/article/pii/S0039602807008758?via%3Dihub

  199. Muscat J, Wander A, Harrison N (2001) Chem Phys Lett 342(3–4):397. https://doi.org/10.1016/S0009-2614(01)00616-9. https://www.sciencedirect.com/science/article/pii/S0009261401006169

  200. Bredow T, Pacchioni G (2002) Chem Phys Lett 355(5–6):417. https://doi.org/10.1016/S0009-2614(02)00259-2. https://www.sciencedirect.com/science/article/pii/S0009261402002592

  201. Wu X, Selloni A, Nayak SK (2004) J Chem Phys 120(9):4512. https://doi.org/10.1063/1.1636725. http://aip.scitation.org/doi/10.1063/1.1636725

  202. Rasmussen MD, Molina LM, Hammer B (2004) J Chem Phys 120(2):988. https://doi.org/10.1063/1.1631922. http://aip.scitation.org/doi/10.1063/1.1631922

  203. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277(5698):637. https://doi.org/10.1038/277637a0. http://www.nature.com/articles/277637a0

  204. Halmann M, Ulman M, Aurian-Blajeni B (1983) Solar Energy 31(4):429. https://doi.org/10.1016/0038-092X(83)90145-7. https://www.sciencedirect.com/science/article/pii/0038092X83901457?via%3Dihub

  205. Adachi K, Ohta K, Mizuno T (1994) Solar Energy 53(2):187. https://doi.org/10.1016/0038-092X(94)90480-4. https://www.sciencedirect.com/science/article/pii/0038092X94904804

  206. Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) J Phys Chem B 108(19):6004. https://doi.org/10.1021/jp031267y. http://pubs.acs.org/doi/abs/10.1021/jp031267y

  207. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293(5528):269. https://doi.org/10.1126/science.1061051. http://www.ncbi.nlm.nih.gov/pubmed/11452117

  208. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108(50):19384. https://doi.org/10.1021/jp046857q. https://pubs.acs.org/doi/abs/10.1021/jp046857q

  209. Di Valentin C, Pacchioni G, Selloni A (2005) Chem Mater 17(26):6656. https://doi.org/10.1021/cm051921h. https://pubs.acs.org/doi/abs/10.1021/cm051921h

  210. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109(23):11414. https://doi.org/10.1021/jp051756t. https://pubs.acs.org/doi/abs/10.1021/jp051756t

  211. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S (2007) Nature Nanotechnol 2(11):687. https://doi.org/10.1038/nnano.2007.346. http://www.nature.com/articles/nnano.2007.346

  212. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Nature 466(7305):470. https://doi.org/10.1038/nature09211. http://www.nature.com/articles/nature09211

  213. Kolmer M, Ahmad Zebari AA, Prauzner-Bechcicki JS, Piskorz W, Zasada F, Godlewski S, Such B, Sojka Z, Szymonski M (2013) Angew Chem Int Edn 52(39):10300. https://doi.org/10.1002/anie.201303657

  214. Zasada F, Piskorz W, Godlewski S, Prauzner-Bechcicki JS, Tekiel A, Budzioch J, Cyganik P, Szymonski M, Sojka Z (2011) J Phys Chem C 115(10):4134. https://doi.org/10.1021/jp111014r

  215. Zasada F, Piskorz W, Gryboś J, Sojka Z (2014) J Phys Chem C 118(17):8971. https://doi.org/10.1021/jp412756a

  216. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Nature 402(6759):276. https://doi.org/10.1038/46248. http://www.nature.com/doifinder/10.1038/46248

  217. Stadelmann PA (1987) Ultramicroscopy 21(2):131. https://doi.org/10.1016/0304-3991(87)90080-5. https://www.sciencedirect.com/science/article/pii/0304399187900805

  218. Stadelmann PA. JEMS-SAAS. http://www.jems-saas.ch/

  219. Kolmer M, Zuzak R, Ahmad Zebari AA, Godlewski S, Prauzner-Bechcicki JS, Piskorz W, Zasada F, Sojka Z, Bléger D, Hecht S, Szymonski M (2015) Chem Commun 51(56):11276. https://doi.org/10.1039/C5CC02989A. http://xlink.rsc.org/?DOI=C5CC02989A

  220. Vanderbilt D, Zhao X, Ceresoli D (2005) Thin Solid Films 486(1–2):125. https://doi.org/10.1016/j.tsf.2004.11.232. https://www.sciencedirect.com/science/article/pii/S0040609004019066?via%3Dihub

  221. Jung KT, Bell AT (2002) Catal Lett 80(1–2):63. https://doi.org/10.1023/A:1015326726898. http://link.springer.com/10.1023/A:1015326726898

  222. Matter PH, Braden DJ, Ozkan US (2004) J Catal 223(2):340. https://doi.org/10.1016/j.jcat.2004.01.031. https://www.sciencedirect.com/science/article/pii/S0021951704000533

  223. Adamski A, Sojka Z, Dyrek K, Che M, Wendt G, Albrecht S (1999) Langmuir 15(18):5733. https://doi.org/10.1021/la981431m. https://pubs.acs.org/doi/abs/10.1021/la981431m

  224. Korhonen ST, Airaksinen SM, Krause AOI (2006) Catal Today 112(1–4):37. https://doi.org/10.1016/j.cattod.2005.11.053. http://linkinghub.elsevier.com/retrieve/pii/S0920586105008710

  225. Zavodinsky VG, Chibisov AN (2006) J Phys Conf Ser 29:173. https://doi.org/10.1088/1742-6596/29/1/033. http://stacks.iop.org/1742-6596/29/i=1/a=033?key=crossref.fc6f5dcadf81965d0d034b0436efe5a2

  226. Durandurdu M (2009) Epl 88(6):66001. https://doi.org/10.1209/0295-5075/88/66001. http://stacks.iop.org/0295-5075/88/i=6/a=66001?key=crossref.d10a35965ddce7bab98cdc40aaaa3d69

  227. NETL (2004) Seventh Edition Fuel Cell Handbook. Tech. rep., National Energy Technology Laboratory, Pittsburgh, PA, and Morgantown, WV. https://doi.org/10.2172/834188. http://www.osti.gov/servlets/purl/834188-H0AaAO/native/

  228. Reddy BM, Khan A (2005) Catal Rev 47(2):257. https://doi.org/10.1081/CR-200057488. http://www.tandfonline.com/doi/abs/10.1081/CR-200057488

  229. Zhao X, Vanderbilt D (2002) Phys Rev B Condens Matter Mater Phys 65(7):1. https://doi.org/10.1103/PhysRevB.65.075105. https://link.aps.org/doi/10.1103/PhysRevB.65.075105

  230. Jomard G, Petit T, Pasturel A, Magaud L, Kresse G, Hafner J (1999) Phys Rev B 59(6):4044. https://doi.org/10.1103/PhysRevB.59.4044. https://link.aps.org/doi/10.1103/PhysRevB.59.4044

  231. Zhang L, Zhu L, Virkar AV (2016) J Power Sources 302:98. https://doi.org/10.1016/j.jpowsour.2015.10.026. https://www.sciencedirect.com/science/article/pii/S0378775315304134

  232. Garvie RC (1965) J Phys Chem 69(4):1238. https://doi.org/10.1021/j100888a024. http://pubs.acs.org/doi/abs/10.1021/j100888a024

  233. Jaffe JE, Bachorz RA, Gutowski M (2005) Phys Rev B Condens Matter Mater Phys 72(14):144107. https://doi.org/10.1103/PhysRevB.72.144107. https://link.aps.org/doi/10.1103/PhysRevB.72.144107

  234. Li S, Dixon DA (2010) J Phys Chem A 114(7):2665. https://doi.org/10.1021/jp910310j. http://pubs.acs.org/doi/abs/10.1021/jp910310j

  235. Gerosa M, Bottani CE, Caramella L, Onida G, Di Valentin C, Pacchioni G (2015) Phys Rev B Condens Matter Materials Phys 91(15):155201. 10.1103/PhysRevB.91.155201. https://link.aps.org/doi/10.1103/PhysRevB.91.155201

  236. Zhu J, van Ommen JG, Lefferts L (2006) Catal Today 117(1–3):163. https://doi.org/10.1016/J.CATTOD.2006.05.046. https://www.sciencedirect.com/science/article/pii/S0920586106002550

  237. Boulc’h F, Dessemond L, Djurado E (2004) J Eur Ceram Soc 24(6):1181. https://doi.org/10.1016/S0955-2219(03)00563-6. https://www.sciencedirect.com/science/article/pii/S0955221903005636

  238. Piskorz W, Gryboś J, Zasada F, Zapała P, Cristol S, Paul JF, Sojka Z (2012) J Phys Chem C 116(36):19307. https://doi.org/10.1021/jp3050059

  239. Piskorz W, Gryboś J, Zasada F, Cristol S, Paul JF, Adamski A, Sojka Z (2011) J Phys Chem C 115(49):24274. https://doi.org/10.1021/jp2086335

  240. Barnard AS, Curtiss LA (2005) Rev Adv Mater Sci 10(2):105

    Google Scholar 

  241. Liebau F, Gies H, Gunawardane RP, Marler B (1986) Zeolites 6(5):373. https://doi.org/10.1016/0144-2449(86)90065-5. https://www.sciencedirect.com/science/article/pii/0144244986900655

  242. Akporiaye DE, Dahl IM, Mostad HB, Wendelbo R (1996) J Phys Chem 100(10):4148. https://doi.org/10.1021/jp952189k. http://pubs.acs.org/doi/abs/10.1021/jp952189k

  243. Olson DH, Khosrovani N, Peters AW, Toby BH (2000) J Phys Chem B 104(20):4844. https://doi.org/10.1021/jp000417r. http://pubs.acs.org/doi/abs/10.1021/jp000417r

  244. Lu B, Kanai T, Oumi Y, Sano T (2007) J Porous Mater 14(1):89. https://doi.org/10.1007/s10934-006-9012-3. http://link.springer.com/10.1007/s10934-006-9012-3

  245. Sazama P, Tabor E, Klein P, Wichterlova B, Sklenak S, Mokrzycki L, Pashkkova V, Ogura M, Dedecek J (2016) J Catal 333:102. https://doi.org/10.1016/j.jcat.2015.10.010. https://www.sciencedirect.com/science/article/pii/S0021951715003383

  246. Di Iorio JR, Gounder R (2016) Chem Mater 28(7):2236. https://doi.org/10.1021/acs.chemmater.6b00181. http://pubs.acs.org/doi/10.1021/acs.chemmater.6b00181

  247. Klinowski J (1984) Prog Nucl Magn Reson Spectrosc 16:237. https://doi.org/10.1016/0079-6565(84)80007-2. https://www.sciencedirect.com/science/article/pii/0079656584800072?via%3Dihub

  248. Majda D, Paz FA, Friedrichs D, Foster MD, Simperler A, Bell RG, Klinowski J (2008) J Phys Chem C 112(4):1040. https://doi.org/10.1021/jp0760354. https://pubs.acs.org/doi/abs/10.1021/jp0760354

  249. Benco L, Bucko T, Hafner J, Toulhoat H (2005) J Phys Chem B 109(43):20361. https://doi.org/10.1021/jp0530597. https://pubs.acs.org/doi/abs/10.1021/jp0530597

  250. García-Pérez E, Dubbeldam D, Liu B, Smit B, Calero S (2007) Angew Chem Int Edn 46(1–2):276. https://doi.org/10.1002/anie.200603136. http://doi.wiley.com/10.1002/anie.200603136

  251. Meeprasert J, Kungwan N, Jungsuttiwong S, Namuangruk S (2014) Microporous Mesoporous Mater 195:227. https://doi.org/10.1016/j.micromeso.2014.04.038. https://www.sciencedirect.com/science/article/pii/S1387181114002248?via%3Dihub

  252. Xu R, Pang W, Yu J, Huo Q, Chen J (2007) Chem zeolites and related porous materials synthesis and structure. Wiley, Asia. https://doi.org/10.1002/9780470822371. https://www.wiley.com/en-pl/Chemistry+of+Zeolites+and+Related+Porous+Materials:+Synthesis+and+Structure-p-9780470822333

  253. Kowalak S, Stawiński K, Makowiak A (2001) Microporous Mesoporous Mater 44–45:283. https://doi.org/10.1016/S1387-1811(01)00194-9. https://www.sciencedirect.com/science/article/pii/S1387181101001949?via%3Dihub

  254. Nogier JP, Millot Y, Man PP, Shishido T, Che M, Dzwigaj S (2009) J Phys Chem C 113(12):4885. https://doi.org/10.1021/jp8099829. http://pubs.acs.org/doi/10.1021/jp8099829

  255. Trejda M, Ziolek M, Millot Y, Chalupka K, Che M, Dzwigaj S (2011) J Catal 281(1):169. https://doi.org/10.1016/j.jcat.2011.04.013. https://www.sciencedirect.com/science/article/pii/S0021951711001357?via%3Dihub

  256. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Chem Soc Rev 37(11):2530. https://doi.org/10.1039/b809030k. http://xlink.rsc.org/?DOI=b809030k

  257. Roth WJ, Nachtigall P, Morris RE, Čejka J (2014) Chem Rev 114(9):4807. https://doi.org/10.1021/cr400600f. http://pubs.acs.org/doi/10.1021/cr400600f

  258. Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F (2018) Catal Sci Technol 8(1):114. https://doi.org/10.1039/C7CY01229B. http://xlink.rsc.org/?DOI=C7CY01229B

  259. Iwamoto M, Yokoo S, Sakai K, Kagawa S (1981) J Chem Soc Faraday Trans 1 77(7):1629. https://doi.org/10.1039/f19817701629. http://xlink.rsc.org/?DOI=f19817701629

  260. Iwamoto M, Furukawa H, Mine Y, Uemura F, Mikuriya SI, Kagawa S (1986) J Chem Soc Chem Commun 0(16):1272. https://doi.org/10.1039/c39860001272. http://xlink.rsc.org/?DOI=c39860001272

  261. Oda A, Torigoe H, Itadani A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y (2012) Angew Chem Int Edn 51(31):7719. https://doi.org/10.1002/anie.201201000. http://doi.wiley.com/10.1002/anie.201201000

  262. Kozyra P, Piskorz W (2016) Phys Chem Chem Phys 18(18):12592. https://doi.org/10.1039/C5CP05493A. http://xlink.rsc.org/?DOI=C5CP05493A

  263. Stepanov AG, Arzumanov SS, Gabrienko AA, Parmon VN, Ivanova II, Freude D (2008) Chem Phys Chem 9(17):2559. https://doi.org/10.1002/cphc.200800569. http://doi.wiley.com/10.1002/cphc.200800569

  264. Biscardi JA, Meitzner GD, Iglesia E (1998) J Catal 179(1):192. https://doi.org/10.1006/jcat.1998.2177. https://www.sciencedirect.com/science/article/pii/S0021951798921777

  265. Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J (2014) Microporous Mesoporous Mater 197:252. https://doi.org/10.1016/j.micromeso.2014.06.027. https://www.sciencedirect.com/science/article/pii/S138718111400345X

  266. Wang X, Xu J, Qi G, Li B, Wang C, Deng F (2013) J Phys Chem C 117(8):4018. https://doi.org/10.1021/jp310872a. http://pubs.acs.org/doi/10.1021/jp310872a

  267. Smeets PJ, Woertink JS, Sels BF, Solomon EI, Schoonheydt RA (2010) Inorg Chem 49(8):3573. https://doi.org/10.1021/ic901814f. http://pubs.acs.org/doi/abs/10.1021/ic901814f

  268. Woertink JS, Smeets PJ, Groothaert MH, Vance MA, Sels BF, Schoonheydt RA, Solomon EI (2009) Proc Natl Acad Sci USA 106(45):18908. https://doi.org/10.1073/pnas.0910461106. http://www.ncbi.nlm.nih.gov/pubmed/19864626, www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2776445

  269. Selvaraj T, Rajalingam R, Balasubramanian V (2018) Appl Surf Sci 434:781. https://doi.org/10.1016/j.apsusc.2017.11.011. https://www.sciencedirect.com/science/article/pii/S0169433217332282?via%3Dihub

  270. Mitoraj M, Michalak A (2007) J Mol Model 13(2):347. https://doi.org/10.1007/s00894-006-0149-4. http://link.springer.com/10.1007/s00894-006-0149-4

  271. Michalak A, Mitoraj M, Ziegler T (2008) J Phys Chem A 112(9):1933. https://doi.org/10.1021/jp075460u. https://pubs.acs.org/doi/abs/10.1021/jp075460u

  272. Ziegler T, Rauk A (1979) Inorg Chem 18(6):1558. https://doi.org/10.1021/ic50196a034. http://pubs.acs.org/doi/abs/10.1021/ic50196a034

  273. M. Radoń. Natorbs (v. 0.3)—utility for computing natural (spin) orbitals and natural orbitals for chemical valence. http://www.chemia.uj.edu.pl/~mradon/natorbs

  274. Pietrzyk P, Sojka Z, Dzwigaj S, Che M (2007) J Am Chem Soc 129(46):14174. https://doi.org/10.1021/ja076689q. https://pubs.acs.org/doi/abs/10.1021/ja076689q

  275. Pietrzyk P, Piskorz W, Sojka Z, Broclawik E (2003) J Phys Chem B 107(25):6105. https://doi.org/10.1021/jp034173x

  276. Broclawik E, Datka J, Gil B, Piskorz W, Kozyra P (2000) Topics Catal 11(1–4):335. https://doi.org/10.1023/a:1027235511555. http://link.springer.com/10.1023/A:1027235511555

  277. Uzunova EL, Göltl F, Kresse G, Hafner J (2009) J Phys Chem C 113(13):5274. https://doi.org/10.1021/jp809927k. http://pubs.acs.org/doi/10.1021/jp809927k

  278. Davidová M, Nachtigallová D, Nachtigall P, Sauer J (2004) J Phys Chem B 108(36):13674. https://doi.org/10.1021/jp0478007. https://pubs.acs.org/doi/abs/10.1021/jp0478007

  279. Rejmak P, Broclawik E, Góra-Marek K, Radoń M, Datka J (2008) J Phys Chem C 112(46):17998. https://doi.org/10.1021/jp8042686. http://pubs.acs.org/doi/10.1021/jp8042686

  280. Izquierdo R, Rodríguez LJ, Añez R, Sierraalta A (2011) J Mol Catal A Chem 348(1–2):55. https://doi.org/10.1016/j.molcata.2011.07.018. https://www.sciencedirect.com/science/article/pii/S1381116911003189

  281. Göltl F, Hafner J (2012) J Chem Phys 136(6):64501. https://doi.org/10.1063/1.3676410. http://aip.scitation.org/doi/10.1063/1.3676410

  282. Heyden A, Peters B, Bell AT, Keil FJ (2005) J Phys Chem B 109(5):1857. https://doi.org/10.1021/jp040549a. https://pubs.acs.org/doi/abs/10.1021/jp040549a

  283. Kozyra P, Piskorz W (2015) Phys Chem Chem Phys PCCP 17(20):13267. https://doi.org/10.1039/c4cp05932h. http://www.ncbi.nlm.nih.gov/pubmed/25920323

  284. Broclawik E, Załucka J, Kozyra P, Mitoraj M, Datka J (2010) J Phys Chem C 114(21):9808. https://doi.org/10.1021/jp1002676. http://pubs.acs.org/doi/10.1021/jp1002676

  285. Kozyra P, Załucka J, Mitoraj M, Brocławik E, Datka J (2008) Catal Lett 126(3–4):241. https://doi.org/10.1007/s10562-008-9620-4. http://link.springer.com/10.1007/s10562-008-9620-4

  286. Kozyra P, Radon M, Datka J, Broclawik E (2012) Struct Chem 23(5):1349. https://doi.org/10.1007/s11224-012-0050-y. http://link.springer.com/10.1007/s11224-012-0050-y

  287. Radoń M, Kozyra P, Stȩpniewski A, Datka J, Broclawik E (2013) Can J Chem 91(7):538. https://doi.org/10.1139/cjc-2012-0536. http://www.nrcresearchpress.com/doi/abs/10.1139/cjc-2012-0536

  288. Sierka M, Sauer J (2000) J Chem Phys 112(16):6983. https://doi.org/10.1063/1.481296. https://aip.scitation.org/doi/10.1063/1.481296

  289. Pietrzyk P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2007) Catal Today 119(1–4):219. https://doi.org/10.1016/j.cattod.2006.08.054. https://www.sciencedirect.com/science/article/pii/S0920586106005256?via%3Dihub

  290. Dubkov K, Ovanesyan N, Shteinman A, Starokon E, Panov G (2002) J Catal 207(2):341. https://doi.org/10.1006/JCAT.2002.3552. https://www.sciencedirect.com/science/article/pii/S0021951702935529?via%3Dihub

  291. Starokon EV, Parfenov MV, Arzumanov SS, Pirutko LV, Stepanov AG, Panov GI (2013) J Catal 300:47. https://doi.org/10.1016/J.JCAT.2012.12.030. https://www.sciencedirect.com/science/article/pii/S002195171200423X

  292. Xu J, Armstrong RD, Shaw G, Dummer NF, Freakley SJ, Taylor SH, Hutchings GJ (2016) Catal Today 270:93. https://doi.org/10.1016/J.CATTOD.2015.09.011. https://www.sciencedirect.com/science/article/pii/S0920586115005659

  293. Park KS, Kim JH, Park SH, Moon DJ, Roh HS, Chung CH, Um SH, Choi JH, Bae JW (2017) J Mol Catal A Chem 426:130. https://doi.org/10.1016/J.MOLCATA.2016.11.008. https://www.sciencedirect.com/science/article/pii/S1381116916304824

  294. Kletnieks PW, Liang AJ, Craciun R, Ehresinann JO, Marcus DM, Bhirud VA, Klaric MM, Hayman MJ, Guenther DR, Bagatchenko OP, Dixon DA, Gates BC, Haw JF (2007) Chem Eur J 13(26):7294. https://doi.org/10.1002/chem.200700721. http://doi.wiley.com/10.1002/chem.200700721

  295. Archipov T, Santra S, Ene AB, Stoll H, Rauhut G, Roduner E (2009) J Phys Chem C 113(10):4107. https://doi.org/10.1021/jp805976a. http://pubs.acs.org/doi/10.1021/jp805976a

  296. Xiao J, Wei J (1992) Chem Eng Sci 47(5):1123. https://doi.org/10.1016/0009-2509(92)80236-6. https://www.sciencedirect.com/science/article/pii/0009250992802366

  297. Xiao J, Wei J (1992) Chem Eng Sci 47(5):1143. https://doi.org/10.1016/0009-2509(92)80237-7. https://www.sciencedirect.com/science/article/pii/0009250992802377

  298. Song L, Sun Z, Duan L, Gui J, McDougall GS (2007) Microporous Mesoporous Mater 104(1–3):115 https://doi.org/10.1016/j.micromeso.2007.01.015. https://www.sciencedirect.com/science/article/pii/S1387181107000418

  299. Gonçalves CV, Cardoso D (2008) Microporous Mesoporous Mater 116(1–3):352. https://doi.org/10.1016/j.micromeso.2008.04.022. https://www.sciencedirect.com/science/article/pii/S138718110800200X

  300. Abdelrasoul A, Zhang H, Cheng CH, Doan H (2017) Microporous Mesoporous Mater 242:294. https://doi.org/10.1016/j.micromeso.2017.01.038. https://www.sciencedirect.com/science/article/pii/S1387181117300380

  301. Yoshino H, Ohnishi CH, Hosokawa S, Wada K, Inoue M (2011) J Mater Sci 46(3):797. https://doi.org/10.1007/s10853-010-4818-4. http://link.springer.com/10.1007/s10853-010-4818-4

  302. Wilczkowska E, Krawczyk K, Petryk J, Sobczak JW, Kaszkur Z (2010) Appl Catal A Gen 389(1–2):165. https://doi.org/10.1016/j.apcata.2010.09.016. http://linkinghub.elsevier.com/retrieve/pii/S0926860X10006708

  303. Amrousse R, Tsutsumi A, Bachar A, Lahcene D (2013) Appl Catal A Gen 450:253. https://doi.org/10.1016/j.apcata.2012.10.036. http://linkinghub.elsevier.com/retrieve/pii/S0926860X12006849

  304. Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15(5):851. https://doi.org/10.1002/adfm.200400429. http://doi.wiley.com/10.1002/adfm.200400429

  305. Woodhouse M, Herman GS, Parkinson BA (2005) Chem Mater 17(17):4318. https://doi.org/10.1021/cm050546q. http://pubs.acs.org/doi/abs/10.1021/cm050546q

  306. Wang G, Liu H, Horvat J, Wang B, Qiao S, Park J, Ahn H (2010) Chem A Eur J 16(36):11020. https://doi.org/10.1002/chem.201000562. http://doi.wiley.com/10.1002/chem.201000562

  307. Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D (2005) Adv Mater 17(2):217. https://doi.org/10.1002/adma.200400833. http://doi.wiley.com/10.1002/adma.200400833

  308. Zasada F, Stelmachowski P, Maniak G, Paul JF, Kotarba A, Sojka Z (2009) Catal Lett 127(1–2):126. https://doi.org/10.1007/s10562-008-9655-6. http://link.springer.com/10.1007/s10562-008-9655-6

  309. Stelmachowski P, Zasada F, Maniak G, Granger P, Inger M, Wilk M, Kotarba A, Sojka Z (2009) Catal Lett 130(3–4):637. https://doi.org/10.1007/s10562-009-0014-z. http://link.springer.com/10.1007/s10562-009-0014-z

  310. Piskorz W, Zasada F, Stelmachowski P, Kotarba A, Sojka Z (2008) Catal Today 137(2–4):418. https://doi.org/10.1016/j.cattod.2008.02.027

  311. Karásková K, Obalová L, Jirátová K, Kovanda F (2010) Chem Eng J 160(2):480. https://doi.org/10.1016/j.cej.2010.03.058. http://linkinghub.elsevier.com/retrieve/pii/S1385894710002949

  312. Qiu Y, Yang S, Deng H, Jin L, Li W (2010) J Mater Chem 20(21):4439. https://doi.org/10.1039/c0jm00101e. http://xlink.rsc.org/?DOI=c0jm00101e

  313. Zhou L, Zhao D, Lou XW (2012) Adv Mater 24(6):745. https://doi.org/10.1002/adma.201104407. http://doi.wiley.com/10.1002/adma.201104407

  314. Fleet ME (1986) J Solid State Chemi 62(1):75. https://doi.org/10.1016/0022-4596(86)90218-5. http://linkinghub.elsevier.com/retrieve/pii/0022459686902185

  315. Sickafus KE, Wills JM, Grimes NW (2004) J Am Ceram Soc 82(12):3279. https://doi.org/10.1111/j.1151-2916.1999.tb02241.x. http://doi.wiley.com/10.1111/j.1151-2916.1999.tb02241.x

  316. Paudel TR, Zakutayev A, Lany S, D’Avezac M, Zunger A (2011) Adv Funct Mater 21(23):4493. https://doi.org/10.1002/adfm.201101469. http://doi.wiley.com/10.1002/adfm.201101469

  317. Rabe KM (2010) Annu Rev Condens Matter Phys 1(1):211. https://doi.org/10.1146/annurev-conmatphys-070909-103932. http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-070909-103932

  318. Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321(5890):792. https://doi.org/10.1126/science.1158722. http://www.sciencemag.org/cgi/doi/10.1126/science.1158722

  319. Qiao L, Xiao HY, Meyer HM, Sun JN, Rouleau CM, Puretzky AA, Geohegan DB, Ivanov IN, Yoon M, Weber WJ, Biegalski MD (2013) J Mater Chem C 1(31):4628. https://doi.org/10.1039/c3tc30861h. http://xlink.rsc.org/?DOI=c3tc30861h

  320. Selcuk S, Selloni A (2015) J Phys Chem C 119(18):9973. https://doi.org/10.1021/acs.jpcc.5b02298. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b02298

  321. Wang L, Maxisch T, Ceder G (2006) Phys Rev B Conden Matter Mater Phys 73(19):195107. https://doi.org/10.1103/PhysRevB.73.195107. https://link.aps.org/doi/10.1103/PhysRevB.73.195107

  322. O’Brien CJ, Rák Z, Brenner DW (2013) J Phys Condens Matter 25(44):445008. https://doi.org/10.1088/0953-8984/25/44/445008. http://stacks.iop.org/0953-8984/25/i=44/a=445008?key=crossref.24ee6c1a77b9ba202f63e7419ccf1d0e

  323. Montoya A, Haynes BS (2011) Chem Phys Lett 502(1–3):63. https://doi.org/10.1016/j.cplett.2010.12.015. http://linkinghub.elsevier.com/retrieve/pii/S000926141001599X

  324. Chen J, Wu X, Selloni A (2011) Phys Rev B 83(24):245204. https://doi.org/10.1103/PhysRevB.83.245204. https://link.aps.org/doi/10.1103/PhysRevB.83.245204

  325. Wu Z, Cohen RE, Singh DJ (2004) Phys Rev B 70(10):104112. https://doi.org/10.1103/PhysRevB.70.104112. https://link.aps.org/doi/10.1103/PhysRevB.70.104112

  326. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH Verlag GmbH, Weinheim. FRG. https://doi.org/10.1002/3527600043. http://doi.wiley.com/10.1002/3527600043

  327. Koo HJ, Whangbo MH (2008) Inorg Chem 47(11):4779. https://doi.org/10.1021/ic800216j. http://pubs.acs.org/doi/abs/10.1021/ic800216j

  328. Wei SH, Zunger A (1993) Phys Rev B 48(9):6111. https://doi.org/10.1103/PhysRevB.48.6111. https://link.aps.org/doi/10.1103/PhysRevB.48.6111

  329. Rodriguez-Fortea A, Llunell M, Alemany P, Canadell E (2009) Inorg Chem 48(13):5779. https://doi.org/10.1021/ic900105u. http://pubs.acs.org/doi/abs/10.1021/ic900105u

  330. Piskunov S, Kotomin EA, Heifets E, Maier J, Eglitis RI, Borstel G (2005) Surf Sci 575(1–2):75. https://doi.org/10.1016/j.susc.2004.11.008. http://linkinghub.elsevier.com/retrieve/pii/S0039602804014414

  331. Wahl R, Vogtenhuber D, Kresse G (2008) Phys Rev B Condens Matter Mater Phys 78(10):104116. https://doi.org/10.1103/PhysRevB.78.104116. https://link.aps.org/doi/10.1103/PhysRevB.78.104116

  332. Kvyatkovskii OE, Karadag F, Mamedov A, Zakharov GA (2004) Phys Solid State 46(9):1717. https://doi.org/10.1134/1.1799192. http://link.springer.com/10.1134/1.1799192

  333. Zhao Q, Yan Z, Chen C, Chen J (2017) Chem Rev 117(15):10121. https://doi.org/10.1021/acs.chemrev.7b00051. http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00051

  334. Zasada F, Piskorz W, Stelmachowski P, Kotarba A, Paul JF, Płociński T, Kurzydłowski KJ, Sojka Z (2011) J Phys Chem C 115(14):6423. https://doi.org/10.1021/jp200581s

  335. Lazzeri M, Thibaudeau P (2006) Phys Rev B Condens Matter Mater Phys 74(14):140301. https://doi.org/10.1103/PhysRevB.74.140301. https://link.aps.org/doi/10.1103/PhysRevB.74.140301

  336. Fang CM, de Wijs GA, Loong CK, de With G (2007) J Mater Chem 17(46):4908. https://doi.org/10.1039/b706814j. http://xlink.rsc.org/?DOI=b706814j

  337. López-Moreno S, Romero AH, Rodríguez-Hernandez P, Muñoz A (2009) High Press Res 29(4):573. https://doi.org/10.1080/08957950903474635. http://www.tandfonline.com/doi/abs/10.1080/08957950903474635

  338. Ono S, Brodholt JP, Price GD (2008) Phys Chem Miner 35(7):381. https://doi.org/10.1007/s00269-008-0231-9. http://link.springer.com/10.1007/s00269-008-0231-9

  339. Ding Y, Xu L, Chen C, Shen X, Suib SL (2008) J Phys Chem C 112(22):8177. https://doi.org/10.1021/jp0773839. http://pubs.acs.org/doi/10.1021/jp0773839

  340. Feng J, Zeng HC (2003) Chem Mater 15(14):2829. https://doi.org/10.1021/cm020940d. http://pubs.acs.org/doi/abs/10.1021/cm020940d

  341. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Nature 458(7239):746. https://doi.org/10.1038/nature07877. http://www.nature.com/articles/nature07877

  342. Xiao J, Kuang Q, Yang S, Xiao F, Wang S, Guo L (2013) Sci Rep 3(1):2300. https://doi.org/10.1038/srep02300. http://www.nature.com/articles/srep02300

  343. Hu L, Peng Q, Li Y (2008) J Am Chem Soc 130(48):16136. https://doi.org/10.1021/ja806400e. http://pubs.acs.org/doi/abs/10.1021/ja806400e

  344. Yu X, Huo CF, Li YW, Wang J, Jiao H (2012) Surf Sci 606(9–10):872. https://doi.org/10.1016/j.susc.2012.02.003. http://linkinghub.elsevier.com/retrieve/pii/S0039602812000544

  345. Zasada F, Piskorz W, Cristol S, Paul JF, Kotarba A, Sojka Z (2010) J Phys Chem C 114(50):22245. https://doi.org/10.1021/jp109264b

  346. Zasada F, Gryboś J, Indyka P, Piskorz W, Kaczmarczyk J, Sojka Z (2014) J Phys Chem C 118(33):19085. https://doi.org/10.1021/jp503737p. http://pubs.acs.org/doi/abs/10.1021/jp503737p

  347. Takita Y, Tashiro T, Saito Y, Hori F (1986) J Catal 97(1):25. https://doi.org/10.1016/0021-9517(86)90033-3. http://linkinghub.elsevier.com/retrieve/pii/0021951786900333

  348. Maniak G, Stelmachowski P, Kotarba A, Sojka Z, Rico-Pérez V, Bueno-López A (2013) Appl Catal B Environ 136–137:302. https://doi.org/10.1016/j.apcatb.2013.01.068. http://linkinghub.elsevier.com/retrieve/pii/S0926337313001045

  349. Zasada F, Piskorz W, Sojka Z (2015) J Phys Chem C 119:33. https://doi.org/10.1021/acs.jpcc.5b05136

  350. Zasada F, Piskorz W, Janas J, Gryboś J, Indyka P, Sojka Z (2015) ACS Catal 5(11):6879. https://doi.org/10.1021/acscatal.5b01900

  351. Hashim AH, Zayed AOH, Zain SM, Lee VS, Said SM (2018) Appl Surf Sci 427:1090. https://doi.org/10.1016/j.apsusc.2017.09.085. http://linkinghub.elsevier.com/retrieve/pii/S0169433217327344

  352. Zasada F, Piskorz W, Janas J, Budiyanto E, Sojka Z (2017) J Phys Chem C 121(43):24128. https://doi.org/10.1021/acs.jpcc.7b09597

  353. Shojaee K, Montoya A, Haynes BS (2013) Comput Mater Sci 72:15. https://doi.org/10.1016/j.commatsci.2013.02.001. http://linkinghub.elsevier.com/retrieve/pii/S0927025613000505

  354. Zasada F, Gryboś J, Piskorz W, Sojka Z (2018) J Phys Chem C 122:5. https://doi.org/10.1021/acs.jpcc.7b11869

  355. Chen J, Selloni A (2012) Phys Rev B Condens Matter Mater Phys 85(8):085306. https://doi.org/10.1103/PhysRevB.85.085306. https://link.aps.org/doi/10.1103/PhysRevB.85.085306

  356. Vaz C, Wang HQ, Ahn C, Henrich V, Baykara M, Schwendemann T, Pilet N, Albers B, Schwarz U, Zhang L, Zhu Y, Wang J, Altman E (2009) Surf Sci 603(2):291. https://doi.org/10.1016/j.susc.2008.11.022. http://linkinghub.elsevier.com/retrieve/pii/S0039602808008054

  357. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Chem Rev 115(18):9869. https://doi.org/10.1021/acs.chemrev.5b00073. http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00073

  358. Uchaker E, Cao G (2015) Chem Asian J 10(8):1608. https://doi.org/10.1002/asia.201500401. http://doi.wiley.com/10.1002/asia.201500401

  359. Zasada F, Janas J, Piskorz W, Gorczyńska M, Sojka Z (2017) ACS Catal 7(4):2853. https://doi.org/10.1021/acscatal.6b03139

  360. Uusi-Esko K, Rautama EL, Laitinen M, Sajavaara T, Karppinen M (2010) Chem Mater 22(23):6297. https://doi.org/10.1021/cm102003y. http://pubs.acs.org/doi/abs/10.1021/cm102003y

  361. Kaczmarczyk J, Zasada F, Janas J, Indyka P, Piskorz W, Kotarba A, Sojka Z (2016) ACS Catal 6(2):1235. https://doi.org/10.1021/acscatal.5b02642

  362. Omata K, Takada T, Kasahara S, Yamada M (1996) Appl Catal A Gen 146(2):255. https://doi.org/10.1016/S0926-860X(96)00151-2. http://linkinghub.elsevier.com/retrieve/pii/S0926860X96001512

  363. Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4(10):505. https://doi.org/10.1016/S1566-7367(03)00131-6. http://linkinghub.elsevier.com/retrieve/pii/S1566736703001316

  364. Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120(2):145. https://doi.org/10.1016/j.cattod.2006.07.042. http://linkinghub.elsevier.com/retrieve/pii/S0920586106004731

  365. Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B Environ 78(3–4):242. https://doi.org/10.1016/j.apcatb.2007.09.016. http://linkinghub.elsevier.com/retrieve/pii/S0926337307002901

  366. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P (2012) J Catal 296:110. https://doi.org/10.1016/j.jcat.2012.09.005. http://linkinghub.elsevier.com/retrieve/pii/S0021951712002849

  367. Wang YG, Yang XF, Li J (2016) Chin J Catal 37(1):193. https://doi.org/10.1016/S1872-2067(15)60969-X. http://linkinghub.elsevier.com/retrieve/pii/S187220671560969X

  368. Xu XL, Yang E, Li JQ, Li Y, Chen WK (2009) Chemcatchem 1(3):384. https://doi.org/10.1002/cctc.200900115

  369. Hu W, Lan J, Guo Y, Cao XM, Hu P (2016) ACS Catal 6(8):5508. https://doi.org/10.1021/acscatal.6b01080. http://pubs.acs.org/doi/10.1021/acscatal.6b01080

  370. Wang Y, Yang X, Hu L, Li Y, Li J (2014) Chin J Catal 35(4):462. https://doi.org/10.1016/S1872-2067(14)60043-7. http://linkinghub.elsevier.com/retrieve/pii/S1872206714600437

  371. Lv CQ, Liu C, Wang GC (2014) Catal Commun 45:83. https://doi.org/10.1016/j.catcom.2013.10.039. http://linkinghub.elsevier.com/retrieve/pii/S156673671300410X

  372. Zou CY, Ji W, Shen Z, Tang Q, Fan M (2018) Appl Surf Sci 442:778. https://doi.org/10.1016/j.apsusc.2018.02.037. http://linkinghub.elsevier.com/retrieve/pii/S0169433218303805

  373. Shojaee K, Haynes BS, Montoya A (2014) Appl Surf Sci 316(1):355. https://doi.org/10.1016/j.apsusc.2014.08.021. http://linkinghub.elsevier.com/retrieve/pii/S016943321401753X

  374. Shojaee K, Haynes BS, Montoya A (2017) Proc Combust Inst 36(3):4365. https://doi.org/10.1016/j.proci.2016.06.100. http://linkinghub.elsevier.com/retrieve/pii/S1540748916301584

  375. Shi X, Bernasek SL, Selloni A (2017) J Phys Chem C 121(7):3929. https://doi.org/10.1021/acs.jpcc.6b12005. http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b12005

  376. Kondratenko EV, Pérez-Ramírez J (2007) Catal Today 121(3–4):197. https://doi.org/10.1016/j.cattod.2006.08.066. http://linkinghub.elsevier.com/retrieve/pii/S092058610600589X

  377. Yakovlev AL, Zhidomirov GM, van Santen RA (2001) Catal Lett 75(1/2):45. https://doi.org/10.1023/A:1016692419859. http://link.springer.com/10.1023/A:1016692419859

  378. Drago RS, Jurczyk K, Kob N (1997) Appl Catal B Environ 13(1):69. https://doi.org/10.1016/S0926-3373(96)00088-4. http://linkinghub.elsevier.com/retrieve/pii/S0926337396000884

  379. Scagnelli A, Valentin CD, Pacchioni G (2006) Surf Sci 600(2):386. https://doi.org/10.1016/j.susc.2005.10.048. http://linkinghub.elsevier.com/retrieve/pii/S0039602805012264

  380. Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Catal Commun 10(7):1062. https://doi.org/10.1016/j.catcom.2008.12.057. http://linkinghub.elsevier.com/retrieve/pii/S1566736709000120

  381. Maniak G, Stelmachowski P, Zasada F, Piskorz W, Kotarba A, Sojka Z (2011) Catal Today 176(1):369. https://doi.org/10.1016/j.cattod.2010.11.043

  382. Lu J, Song J, Niu H, Pan L, Zhang X, Wang L, Zou JJ (2016) Appl Surf Sci 371:61. https://doi.org/10.1016/j.apsusc.2016.02.209. http://linkinghub.elsevier.com/retrieve/pii/S0169433216303968

  383. Si C, Wang Y, Zhang J, Gao H, Lv L, Han L, Zhang Z (2016) Nano Energy 23:105. https://doi.org/10.1016/j.nanoen.2016.03.012. http://linkinghub.elsevier.com/retrieve/pii/S2211285516300234

  384. Si C, Zhang Y, Zhang C, Gao H, Ma W, Lv L, Zhang Z (2017) Electrochim Acta 245:829. https://doi.org/10.1016/j.electacta.2017.06.029. http://linkinghub.elsevier.com/retrieve/pii/S0013468617312677

  385. Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B Environ 90(1–2):132. https://doi.org/10.1016/j.apcatb.2009.03.002. http://linkinghub.elsevier.com/retrieve/pii/S0926337309000939

  386. PalDey S, Gedevanishvili S, Zhang W, Rasouli F (2005) Appl Catal B Environ 56(3):241. https://doi.org/10.1016/j.apcatb.2004.09.013. http://linkinghub.elsevier.com/retrieve/pii/S0926337304005569

  387. Wang S, Ding Z, Wang X (2015) Chem Commun 51(8):1517. https://doi.org/10.1039/C4CC07225A. http://xlink.rsc.org/?DOI=C4CC07225A

  388. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110(11):6446. https://doi.org/10.1021/cr1002326. http://pubs.acs.org/doi/abs/10.1021/cr1002326

  389. Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS (2015) Chem Rev 115(23):12839. https://doi.org/10.1021/acs.chemrev.5b00498. http://pubs.acs.org/doi/10.1021/acs.chemrev.5b00498

  390. Martin A, Luck F, Armbruster U, Patria L, Radnik J, Schneider M (2005) Topics Catal 33(1–4):155. https://doi.org/10.1007/s11244-005-2522-4. http://link.springer.com/10.1007/s11244-005-2522-4

  391. Liu P, He H, Wei G, Liang X, Qi F, Tan F, Tan W, Zhu J, Zhu R (2016) Appl Catal B Environ 182:476. https://doi.org/10.1016/j.apcatb.2015.09.055. http://linkinghub.elsevier.com/retrieve/pii/S0926337315301818

  392. Chen J, Shi W, Yang S, Arandiyan H, Li J (2011) J Phys Chem C 115(35):17400. https://doi.org/10.1021/jp202958b. http://pubs.acs.org/doi/10.1021/jp202958b

  393. Anu Prathap M, Srivastava R (2013) Nano Energy 2(5):1046. https://doi.org/10.1016/j.nanoen.2013.04.003. http://linkinghub.elsevier.com/retrieve/pii/S2211285513000645

  394. Sun S, Zhou Y, Hu B, Zhang Q, Xu ZJ (2016) J Electrochem Soc 163(2):H99. https://doi.org/10.1149/2.0761602jes. http://jes.ecsdl.org/lookup/doi/10.1149/2.0761602jes

  395. Zhu X, Zhao H, Niu X, Liu T, Shi L, Lan M (2016) Microchim Acta 183(8):2431. https://doi.org/10.1007/s00604-016-1887-3. http://link.springer.com/10.1007/s00604-016-1887-3

  396. Periyasamy S, Subramanian P, Levi E, Aurbach D, Gedanken A, Schechter A (2016) ACS Appl Mater Interf 8(19):12176. https://doi.org/10.1021/acsami.6b02491. http://pubs.acs.org/doi/10.1021/acsami.6b02491

  397. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R (2012) Powder Technol 217:330. https://doi.org/10.1016/j.powtec.2011.10.045. http://linkinghub.elsevier.com/retrieve/pii/S0032591011005882

  398. Cui B, Lin H, Liu YZ, Li JB, Sun P, Zhao XC, Liu CJ (2009) J Phys Chem C 113(32):14083. https://doi.org/10.1021/jp900028t. https://pubs.acs.org/doi/10.1021/jp900028t

  399. Blum RP, Niehus H, Hucho C, Fortrie R, Ganduglia-Pirovano MV, Sauer J, Shaikhutdinov S, Freund HJ (2007) Phys Rev Lett 99(22):226103. https://doi.org/10.1103/PhysRevLett.99.226103. https://link.aps.org/doi/10.1103/PhysRevLett.99.226103

  400. Haber J, Witko M, Tokarz R (1997) Appl Catal A Gen 157(1–2):3. https://doi.org/10.1016/S0926-860X(97)00017-3. http://linkinghub.elsevier.com/retrieve/pii/S0926860X97000173

  401. Surnev S, Ramsey MG, Netzer FP (2003) Prog Surf Sci 73(4–8):117. https://doi.org/10.1016/j.progsurf.2003.09.001. http://linkinghub.elsevier.com/retrieve/pii/S0079681603000947

  402. Bahlawane N, Lenoble D (2014) Chem Vapor Depos 20(7-8-9):299. https://doi.org/10.1002/cvde.201400057. http://doi.wiley.com/10.1002/cvde.201400057

  403. Gavrilyuk A, Tritthart U, Gey W (2011) Phys Chem Chem Phys 13(20):9490. https://doi.org/10.1039/c0cp02201b. http://xlink.rsc.org/?DOI=c0cp02201b

  404. Lamsal C, Ravindra NM (2013) J Mater Sci 48(18):6341. https://doi.org/10.1007/s10853-013-7433-3. http://link.springer.com/10.1007/s10853-013-7433-3

  405. Yang J, Lan T, Liu J, Song Y, Wei M (2013) Electrochim Acta 105:489. https://doi.org/10.1016/j.electacta.2013.05.023. http://linkinghub.elsevier.com/retrieve/pii/S0013468613009274

  406. Perera SD, Rudolph M, Mariano RG, Nijem N, Ferraris JP, Chabal YJ, Balkus KJ (2013) Nano Energy 2(5):966. https://doi.org/10.1016/j.nanoen.2013.03.018. http://linkinghub.elsevier.com/retrieve/pii/S2211285513000530

  407. Yeager MP, Du W, Bishop B, Sullivan M, Xu W, Su D, Senanayake SD, Hanson J, Teng X (2013) Chem Sus Chem 6(12):2231. https://doi.org/10.1002/cssc.201300480. http://doi.wiley.com/10.1002/cssc.201300480

  408. Su D, Wang G (2013) ACS Nano 7(12):11218. https://doi.org/10.1021/nn405014d. http://pubs.acs.org/doi/10.1021/nn405014d

  409. Glynn C, Thompson D, Paez J, Collins G, Benavente E, Lavayen V, Yutronic N, Holmes JD, González G, O’Dwyer C (2013) J Mater Chem C 1(36):5675. https://doi.org/10.1039/c3tc31104j. http://xlink.rsc.org/?DOI=c3tc31104j

  410. Chebout K, Iratni A, Bouremana A, Sam S, Keffous A, Gabouze N (2013) Solid State Ion 253:164. https://doi.org/10.1016/j.ssi.2013.09.055. http://linkinghub.elsevier.com/retrieve/pii/S0167273813004694

  411. Modafferi V, Panzera G, Donato A, Antonucci P, Cannilla C, Donato N, Spadaro D, Neri G (2012) Sens Actuators B Chem 163(1):61. https://doi.org/10.1016/j.snb.2012.01.007. http://linkinghub.elsevier.com/retrieve/pii/S0925400512000305

  412. Sobolev VI, Danilevich EV, Koltunov KY (2013) Kinet Catal 54(6):730. https://doi.org/10.1134/S0023158413060128. http://link.springer.com/10.1134/S0023158413060128

  413. Abazari R, Sanati S, Saghatforoush LA (2014) Chem Eng J 236:82. https://doi.org/10.1016/j.cej.2013.09.056. http://linkinghub.elsevier.com/retrieve/pii/S1385894713012497

  414. Enjalbert R, Galy J (1986) Acta Crystallogr Sect C Cryst Struct Commun 42(11):1467. https://doi.org/10.1107/S0108270186091825. http://scripts.iucr.org/cgi-bin/paper?S0108270186091825

  415. Wachs IE (2013) Dalton Trans 42(33):11762. https://doi.org/10.1039/c3dt50692d. http://xlink.rsc.org/?DOI=c3dt50692d

  416. Carrero CA, Schloegl R, Wachs IE, Schomaecker R (2014) ACS Catal 4(10):3357. https://doi.org/10.1021/cs5003417. http://pubs.acs.org/doi/10.1021/cs5003417

  417. Guerrero-Pérez MO (2017) Catal Today 285:226. https://doi.org/10.1016/j.cattod.2017.01.037. https://www.sciencedirect.com/science/article/pii/S0920586117300378

  418. Wachs IE (2005) Catal Today 100(1–2):79. https://doi.org/10.1016/j.cattod.2004.12.019. http://linkinghub.elsevier.com/retrieve/pii/S0920586104008077

  419. Guerrero-Pérez MO, Wachs IE (2016) Catal Today 277:201. https://doi.org/10.1016/j.cattod.2016.09.031. http://linkinghub.elsevier.com/retrieve/pii/S0920586116305867

  420. Hermann K, Witko M, Druzinic R, Tokarz R (2001) Appl Phys A Mater Sci Process 72(4):429. https://doi.org/10.1007/s003390100756. http://link.springer.com/10.1007/s003390100756

  421. Haber J (1992) in new developments. In: Ruiz P, Delmon B (eds) Selective oxidation by heterogeneous catalysis. Elsevier Science Publishers B.V, Amsterdam, pp 279–304

    Google Scholar 

  422. Tilley RJD (1983) Surface properties and catalysis by non-metals. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster. https://doi.org/10.1007/978-94-009-7160-8. http://link.springer.com/10.1007/978-94-009-7160-8

  423. Bartholomew CH, Farrauto RJ (2010) Fundamentals of industrial catalytic processes 2nd edn. Wiley Inc., Hoboken, NJ, USA. https://doi.org/10.1002/9780471730071. http://doi.wiley.com/10.1002/9780471730071

  424. Schlosser EG (1971) Angewandte Chemie 83(20):812. https://doi.org/10.1002/ange.19710832023. http://doi.wiley.com/10.1002/ange.19710832023

  425. Wachs IE, Weckhuysen BM (1997) Appl Catal A Gen 157(1–2):67. https://doi.org/10.1016/S0926-860X(97)00021-5. http://linkinghub.elsevier.com/retrieve/pii/S0926860X97000215

  426. Weissermel K, Arpe HJ (1978) Industrial organic chemistry: important raw materials and intermediates. Verlag Chemie, Weinheim, New York

    Google Scholar 

  427. Kong M, Liu Q, Wang X, Ren S, Yang J, Zhao D, Xi W, Yao L (2015) Catal Commun 72:121. https://doi.org/10.1016/j.catcom.2015.09.029. http://linkinghub.elsevier.com/retrieve/pii/S156673671530090X

  428. Yu Y, He C, Chen J, Yin L, Qiu T, Meng X (2013) Catal Commun 39:78. https://doi.org/10.1016/j.catcom.2013.05.010ShortCommunication. http://linkinghub.elsevier.com/retrieve/pii/S1566736713001775

  429. Lomnicki S, Lichtenberger J, Xu Z, Waters M, Kosman J, Amiridis MD (2003) Appl Catal B Environ 46(1):105. https://doi.org/10.1016/S0926-3373(03)00215-7. http://linkinghub.elsevier.com/retrieve/pii/S0926337303002157

  430. Høj M, Jensen AD, Grunwaldt JD (2013) Appl Catal A: Gen 451:207. https://doi.org/10.1016/j.apcata.2012.09.037. http://linkinghub.elsevier.com/retrieve/pii/S0926860X12006308

  431. Due-Hansen J, Boghosian S, Kustov A, Fristrup P, Tsilomelekis G, Ståhl K, Christensen CH, Fehrmann R (2007) J Catal 251(2):459. https://doi.org/10.1016/j.jcat.2007.07.016. http://linkinghub.elsevier.com/retrieve/pii/S0021951707002862

  432. Kempf JY, Silvi B, Dietrich A, Catlow CRA, Maigret B (1993) Chem Mater 5(5):641. https://doi.org/10.1021/cm00029a011. http://pubs.acs.org/doi/abs/10.1021/cm00029a011

  433. Yin X, Fahmi A, Endou A, Miura R, Gunji I, Yamauchi R, Kubo M, Chatterjee A, Miyamoto A (1998) Appl Surf Sci 130–132:539. https://doi.org/10.1016/S0169-4332(98)00111-1. http://linkinghub.elsevier.com/retrieve/pii/S0169433298001111

  434. Chakrabarti A, Hermann K, Druzinic R, Witko M, Wagner F, Petersen M (1999) Phys Rev B 59(16):10583. https://doi.org/10.1103/PhysRevB.59.10583. https://link.aps.org/doi/10.1103/PhysRevB.59.10583

  435. Vyboishchikov SF, Sauer J (2001) J Phys Chem A 105(37):8588. https://doi.org/10.1021/jp012294w. http://pubs.acs.org/doi/abs/10.1021/jp012294w

  436. Costa AD, Mathieu C, Barbaux Y, Poelman H, Dalmai-Vennik G, Fiermans L (1997) Surf Sci 370(2–3):339. https://doi.org/10.1016/S0039-6028(96)00956-9. http://linkinghub.elsevier.com/retrieve/pii/S0039602896009569

  437. Goschke RA, Vey K, Maier M, Walter U, Goering E, Klemm M, Horn S (1996) Surf Sci 348(3):305. https://doi.org/10.1016/0039-6028(95)00998-1. http://linkinghub.elsevier.com/retrieve/pii/0039602895009981

  438. Asmis KR, Santambrogio G, Brümmer M, Sauer J (2005) Angew Chem Int Edn 44(20):3122. https://doi.org/10.1002/anie.200462894. http://doi.wiley.com/10.1002/anie.200462894

  439. Calatayud M, Andrés J, Beltrán A (2001) J Phys Chem A 105(42):9760. https://doi.org/10.1021/jp011535x. http://pubs.acs.org/doi/abs/10.1021/jp011535x

  440. Calatayud M, Mguig B, Minot C (2003) Surf Sci 526(3):297. https://doi.org/10.1016/S0039-6028(02)02673-0. http://linkinghub.elsevier.com/retrieve/pii/S0039602802026730

  441. Avdeev VI, Zhidomirov GM (2005) J Struct Chem 46(4):577. https://doi.org/10.1007/s10947-006-0174-2. http://link.springer.com/10.1007/s10947-006-0174-2

  442. Alexopoulos K, Hejduk P, Witko M, Reyniers MF, Marin GB (2010) J Phys Chem C 114(7):3115. https://doi.org/10.1021/jp910685z. http://pubs.acs.org/doi/10.1021/jp910685z

  443. Avdeev VI, Tapilin VM (2009) J Phys Chem C 113(33):14941. https://doi.org/10.1021/jp904211a. http://pubs.acs.org/doi/10.1021/jp904211a

  444. Deo G, Wachs I, Haber J (1994) Crit Rev Surf Chem 4:141

    Google Scholar 

  445. Coudurier G, Védrine J (2000) Catal Today 56(4):415. https://doi.org/10.1016/S0920-5861(99)00301-6. http://linkinghub.elsevier.com/retrieve/pii/S0920586199003016

  446. Avdeev VI, Tapilin VM (2010) J Phys Chem C 114(8):3609. https://doi.org/10.1021/jp911145c. http://pubs.acs.org/doi/10.1021/jp911145c

  447. Todorova TK, Döbler J, Sierka M, Sauer J (2009) J Phys Chem C 113(19):8336. https://doi.org/10.1021/jp811387z. http://pubs.acs.org/doi/10.1021/jp811387z

  448. Inomata M, Miyamoto A, Murakami Y (1980) J Catal 62(1):140. https://doi.org/10.1016/0021-9517(80)90429-7. http://linkinghub.elsevier.com/retrieve/pii/0021951780904297

  449. Volta JC, Portefaix JL (1985) Appl Catal 18(1):1. https://doi.org/10.1016/S0166-9834(00)80296-1. http://linkinghub.elsevier.com/retrieve/pii/S0166983400802961

  450. Ono T, Numata H (1997) J Mol Catal A Chem 116(3):421. https://doi.org/10.1016/S1381-1169(96)00425-6. http://linkinghub.elsevier.com/retrieve/pii/S1381116996004256

  451. Bielanski A, Haber J (1990) Oxygen in catalysis. Marcel Dekker, New York, NY

    Google Scholar 

  452. Sauer J, Döbler J (2004) Dalton Trans (19):3116. https://doi.org/10.1039/B402873B. http://xlink.rsc.org/?DOI=B402873B

  453. Magg N, Giorgi JB, Schroeder T, Bäumer M, Freund HJ (2002) J Phys Chem B 106(34):8756. https://doi.org/10.1021/jp0204556. http://pubs.acs.org/doi/abs/10.1021/jp0204556

  454. Ganduglia-Pirovano MV, Sauer J (2005) J Phys Chem B 109(1):374. https://doi.org/10.1021/jp046233k. http://dx.doi.org/10.1021/jp046233k

  455. Słoczyński J, Grabowski R, Kozłowska A, Tokarz-Sobieraj R, Witko M (2007) J Mol Catal A Chem 277(1–2):27. https://doi.org/10.1016/j.molcata.2007.07.022. http://linkinghub.elsevier.com/retrieve/pii/S1381116907004190

  456. Goclon J, Grybos R, Witko M, Hafner J (2009) Phys Rev B 79(7):075439. https://doi.org/10.1103/PhysRevB.79.075439. https://link.aps.org/doi/10.1103/PhysRevB.79.075439

  457. Gilardoni F, Weber J, Baiker A (1997) J Phys Chem A 101(34):6069. https://doi.org/10.1021/jp9701606. http://pubs.acs.org/doi/abs/10.1021/jp9701606

  458. Soyer S, Uzun A, Senkan S, Onal I (2006) Catal Today 118(3–4 SPEC. ISS.), 268. https://doi.org/10.1016/j.cattod.2006.07.033. http://linkinghub.elsevier.com/retrieve/pii/S0920586106004433

  459. Anstrom M, Dumesic J, Topsøe NY (2002) Catal Lett 78(1–4):281. https://doi.org/10.1023/A:1014996215585

  460. Kornelak P, Michalak A, Najbar M (2005) Catal Today 101(2):175. https://doi.org/10.1016/j.cattod.2005.01.015. http://linkinghub.elsevier.com/retrieve/pii/S0920586105000167

  461. Szaleniec M, Drzewiecka-Matuszek A, Witko M, Hejduk P (2013) J Mol Model 19(10):4487. https://doi.org/10.1007/s00894-013-1951-4. http://link.springer.com/10.1007/s00894-013-1951-4

  462. Gruber M, Hermann K (2013) J Chem Phys 139(24):244701. https://doi.org/10.1063/1.4849556. http://aip.scitation.org/doi/10.1063/1.4849556

  463. Engeser M, Schröder D, Schwarz H (2005) Chem Eur J 11(20):5975. https://doi.org/10.1002/chem.200401352. http://doi.wiley.com/10.1002/chem.200401352

  464. Gauld JW, Radom L (1997) J Am Chem Soc 119(41):9831. https://doi.org/10.1021/ja970785h. http://pubs.acs.org/doi/abs/10.1021/ja970785h

  465. Göbke D, Romanyshyn Y, Guimond S, Sturm JM, Kuhlenbeck H, Döbler J, Reinhardt U, Ganduglia-Pirovano MV, Sauer J, Freund HJ (2009) Angew Chem Int Edn 48(20):3695. https://doi.org/10.1002/anie.200805618. http://doi.wiley.com/10.1002/anie.200805618

Download references

Acknowledgements

The present work was in part funded by the National Science Centre (grant 2016/23/B/ST4/00088). Part of the calculations were performed in the Cyfronet PL-Grid supercomputer centre in Kraków.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Piskorz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piskorz, W., Zasada, F. (2019). Catalytic Properties of Selected Transition Metal Oxides—Computational Studies. In: Broclawik, E., Borowski, T., Radoń, M. (eds) Transition Metals in Coordination Environments. Challenges and Advances in Computational Chemistry and Physics, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-11714-6_12

Download citation

Publish with us

Policies and ethics