Computational Modelling of Structure and Catalytic Properties of Silica-Supported Group VI Transition Metal Oxide Species

  • Jarosław HandzlikEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 29)


Chromium, molybdenum and tungsten oxides supported on amorphous silica are catalysts for many reactions, including large-scale industrial processes. Although these systems have been extensively studied for many years, there are still a few unresolved issues, concerning mainly the nature of the active sites and mechanisms of their formation. Computational studies, using cluster or periodic models to represent the catalyst surface, are helpful in interpretation of spectroscopic data and can provide complementary information about the catalytic process. In this chapter, such computational works on CrOx/SiO2, MoOx/SiO2 and WOx/SiO2 systems are presented. It is seen that coordination environment of the transition metal, determined also by local surface properties, is a key factor influencing catalytic activity of the surface metal species. This results in complex structure–activity relationships. While a great progress has been achieved in modelling of these systems, from simple clusters to advanced periodic slabs, theoretical determination of complex reaction mechanisms using surface models with representative distribution of metal sites is still a challenge for computational catalysis.


Chromium oxide Molybdenum oxide Tungsten oxide Cluster model Periodic model 


  1. 1.
    Sautet P, Delbecq F (2010) Catalysis and surface organometallic chemistry: a view from theory and simulations. Chem Rev 110:1788–1806PubMedCrossRefGoogle Scholar
  2. 2.
    Handzlik J, Kurleto K (2013) Theoretical investigations of heterogeneous olefin metathesis catalysts. Curr Org Chem 17:2796–2813CrossRefGoogle Scholar
  3. 3.
    Handzlik J, Ogonowski J (2012) Structure of isolated molybdenum(VI) and molybdenum(IV) oxide species on silica: periodic and cluster DFT studies. J Phys Chem C 116:5571–5584CrossRefGoogle Scholar
  4. 4.
    Handzlik J, Grybos R, Tielens F (2013) Structure of monomeric chromium(VI) oxide species supported on silica: periodic and cluster DFT studies. J Phys Chem C 117:8138–8149CrossRefGoogle Scholar
  5. 5.
    Gierada M, Michorczyk P, Tielens F, Handzlik J (2016) Reduction of chromia-silica catalysts: a molecular picture. J Catal 340:122–135CrossRefGoogle Scholar
  6. 6.
    Fong A, Yuan Y, Ivry SL, Scott SL, Peters B (2015) Computational kinetic discrimination of ethylene polymerization mechanisms for the Phillips (Cr/SiO2) catalyst. ACS Catal 5:3360–3374CrossRefGoogle Scholar
  7. 7.
    Guesmi H, Tielens F (2012) Chromium oxide species supported on silica: a representative periodic DFT model. J Phys Chem C 116:994–1001CrossRefGoogle Scholar
  8. 8.
    Guesmi H, Grybos R, Handzlik J, Tielens F (2014) Characterization of molybdenum monomeric oxide species supported on hydroxylated silica: a DFT study. Phys Chem Chem Phys 16:18253–18260PubMedCrossRefGoogle Scholar
  9. 9.
    Guesmi H, Grybos R, Handzlik J, Tielens F (2016) Characterization of tungsten monomeric oxide species supported on hydroxylated silica; a DFT study. RSC Adv 6:39424–39432CrossRefGoogle Scholar
  10. 10.
    Floryan L, Borosy AP, Núñez-Zarur F, Comas-Vives A, Copéret C (2017) Strain effect and dual initiation pathway in CrIII/SiO2 polymerization catalysts from amorphous periodic models. J Catal 346:50–56CrossRefGoogle Scholar
  11. 11.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct THEOCHEM 461–462:1–21CrossRefGoogle Scholar
  12. 12.
    Ugliengo P, Sodupe M, Musso F, Bush IJ, Orlando R, Dovesi R (2008) Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv Mater 20:4579–4583CrossRefGoogle Scholar
  13. 13.
    Tielens F, Gervais C, Lambert JF, Mauri F, Costa D (2008) Ab initio study of the hydroxylated surface of amorphous silica: a representative model. Chem Mater 20:3336–3344CrossRefGoogle Scholar
  14. 14.
    Ewing CS, Bhavsar S, Veser G, McCarthy JJ, Johnson JK (2014) Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. Langmuir 30:5133–5141PubMedCrossRefGoogle Scholar
  15. 15.
    Comas-Vives A (2016) Amorphous SiO2 surface models: energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Phys Chem Chem Phys 18:7475–7482PubMedCrossRefGoogle Scholar
  16. 16.
    Gierada M, Petit I, Handzlik J, Tielens F (2016) Hydration in silica based mesoporous materials: a DFT model. Phys Chem Chem Phys 18:32962–32972PubMedCrossRefGoogle Scholar
  17. 17.
    McDaniel MP (2010) A review of the Phillips supported chromium catalyst and its commercial use for ethylene polymerization. In: Advances in Catalysis, vol. 53, pp. 123–606Google Scholar
  18. 18.
    McDaniel M (2017) Manipulating polymerization chemistry of Cr/silica catalysts through calcination. Appl Catal A Gen 542:392–410CrossRefGoogle Scholar
  19. 19.
    Groppo E, Lamberti C, Bordiga S, Spoto G, Zecchina A (2005) The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. Chem Rev 105:115–183PubMedCrossRefGoogle Scholar
  20. 20.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96:3327–3349PubMedCrossRefGoogle Scholar
  21. 21.
    Hakuli A, Harlin ME, Backman LB, Krause AOI (1999) Dehydrogenation of i-butane on CrOx/SiO2 catalysts. J Catal 184:349–356CrossRefGoogle Scholar
  22. 22.
    Ramani NC, Sullivan DL, Ekerdt JG, Jehng J-M, Wachs IE (1998) Selective oxidation of 1-butene over silica-supported Cr(VI), Mo(VI), and W(VI) oxides. J Catal 176:143–154CrossRefGoogle Scholar
  23. 23.
    Cherian M, Rao MS, Hirt AM, Wachs IE, Deo G (2002) Oxidative dehydrogenation of propane over supported chromia catalysts: influence of oxide supports and chromia loading. J Catal 211:482–495CrossRefGoogle Scholar
  24. 24.
    Michorczyk P, Pietrzyk P, Ogonowski J (2012) Preparation and characterization of SBA-1-supported chromium oxide catalysts for CO2 assisted dehydrogenation of propane. Microporous Mesoporous Mater 161:56–66CrossRefGoogle Scholar
  25. 25.
    Botavina MA, Agafonov YA, Gaidai NA, Groppo E, Cortés Corberán V, Lapidus AL, Martra G (2016) Towards efficient catalysts for the oxidative dehydrogenation of propane in the presence of CO2: Cr/SiO2 systems prepared by direct hydrothermal synthesis. Catal Sci Technol 6:840–850CrossRefGoogle Scholar
  26. 26.
    Kim DS, Tatibouet J-M, Wachs IE (1992) Surface structure and reactivity of CrO3/SiO2 catalysts. J Catal 136:209–221CrossRefGoogle Scholar
  27. 27.
    Jehng J-M, Hu H, Gao X, Wachs IE (1996) The dynamic states of silica-supported metal oxide catalysts during methanol oxidation. Catal Today 28:335–350CrossRefGoogle Scholar
  28. 28.
    Liotta LF, Venezia AM, Pantaleo G, Deganello G, Gruttadauria M, Noto R (2004) Chromia on silica and zirconia oxides as recyclable oxidizing system: structural and surface characterization of the active chromium species for oxidation reaction. Catal Today 91–92:231–236CrossRefGoogle Scholar
  29. 29.
    Dines TJ, Inglis S (2003) Raman spectroscopic study of supported chromium(VI) oxide catalysts. Phys Chem Chem Phys 5:1320–1328CrossRefGoogle Scholar
  30. 30.
    Groppo E, Damin A, Bonino F, Zecchina A, Bordiga S, Lamberti C (2005) New strategies in the Raman study of the Cr/SiO2 Phillips catalyst: observation of molecular adducts on Cr(II) sites. Chem Mater 17:2019–2027CrossRefGoogle Scholar
  31. 31.
    Moisii C, Deguns EW, Lita A, Callahan SD, van de Burgt LJ, Magana D, Stiegman AE (2006) Coordination environment and vibrational spectroscopy of Cr(VI) sites supported on amorphous silica. Chem Mater 18:3965–3975CrossRefGoogle Scholar
  32. 32.
    Lee EL, Wachs IE (2007) In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J Phys Chem C 111:14410–14425CrossRefGoogle Scholar
  33. 33.
    Lee EL, Wachs IE (2008) In situ Raman spectroscopy of SiO2-supported transition metal oxide catalysts: an isotopic 18O−16O exchange study. J Phys Chem C 112:6487–6498CrossRefGoogle Scholar
  34. 34.
    Chakrabarti A, Wachs IE (2015) The nature of surface CrOx sites on SiO2 in different environments. Catal Lett 145:985–994CrossRefGoogle Scholar
  35. 35.
    Peek NM, Jeffcoat DB, Moisii C, van de Burgt L, Profeta S, Scott SL, Stiegman AE (2018) Reassessment of the electronic structure of Cr(VI) sites supported on amorphous silica and implications for Cr coordination number. J Phys Chem C 122:4349–4358CrossRefGoogle Scholar
  36. 36.
    Moisii C, Jeffcoat D, Peek N, van de Burgt L, Scott SL, Stiegman AE (2018) Do mono-oxo sites exist in silica-supported Cr(VI) materials? Reassessment of the resonance Raman spectra. J Phys Chem C 122:17149–17160CrossRefGoogle Scholar
  37. 37.
    Gaspar AB, Martins RL, Schmal M, Dieguez LC (2001) Characterization of Cr2+ and ethylene polymerization on Cr/SiO2 catalysts. J Mol Catal A Chem 169:105–112CrossRefGoogle Scholar
  38. 38.
    Groppo E, Damin A, Otero Arean C, Zecchina A (2011) Enhancing the initial rate of polymerisation of the reduced Phillips catalyst by one order of magnitude. Chem Eur J 17:11110–11114PubMedCrossRefGoogle Scholar
  39. 39.
    Brown C, Krzystek J, Achey R, Lita A, Fu R, Meulenberg RW, Polinski M, Peek N, Wang Y, van de Burgt LJ, Profeta S, Stiegman AE, Scott SL (2015) Mechanism of initiation in the Phillips ethylene polymerization catalyst: redox processes leading to the active site. ACS Catal 5:5574–5583CrossRefGoogle Scholar
  40. 40.
    Chakrabarti A, Gierada M, Handzlik J, Wachs IE (2016) Operando molecular spectroscopy during ethylene polymerization by supported CrOx/SiO2 catalysts: active sites, reaction intermediates, and structure-activity relationship. Top Catal 59:725–739CrossRefGoogle Scholar
  41. 41.
    Barzan C, Piovano A, Braglia L, Martino GA, Lamberti C, Bordiga S, Groppo E (2017) Ligands make the difference! Molecular insights into CrVI/SiO2 Phillips catalyst during ethylene polymerization. J Am Chem Soc 139:17064–17073PubMedCrossRefGoogle Scholar
  42. 42.
    Weckhuysen BM, De Ridder LM, Schoonheydt RA (1993) A quantitative diffuse reflectance spectroscopy study of supported chromium catalysts. J Phys Chem 97:4756–4763CrossRefGoogle Scholar
  43. 43.
    Liu B, Nakatani H, Terano M (2002) New aspects of the induction period of ethene polymerization using Phillips CrOx/SiO2 catalyst probed by XPS, TPD and EPMA. J Mol Catal A Chem 184:387–398CrossRefGoogle Scholar
  44. 44.
    Budnyk A, Damin A, Groppo E, Zecchina A, Bordiga S (2015) Effect of surface hydroxylation on the catalytic activity of a Cr(II)/SiO2 model system of Phillips catalyst. J Catal 324:79–87CrossRefGoogle Scholar
  45. 45.
    Weckhuysen BM, De Ridder LM, Grobet PJ, Schoonheydt RA (1995) Redox behavior and dispersion of supported chromium catalysts. J Phys Chem 99:320–326CrossRefGoogle Scholar
  46. 46.
    Weckhuysen BM, Schoonheydt RA, Mabbs FE, Collison D (1996) Electron paramagnetic resonance of heterogeneous chromium catalysts. J Chem Soc Faraday Trans 92:2431–2436CrossRefGoogle Scholar
  47. 47.
    Brown C, Lita A, Tao Y, Peek N, Crosswhite M, Mileham M, Krzystek J, Achey R, Fu R, Bindra JK, Polinski M, Wang Y, van de Burgt LJ, Jeffcoat D, Profeta S, Stiegman AE, Scott SL (2017) Mechanism of initiation in the Phillips ethylene polymerization catalyst: ethylene activation by Cr(II) and the structure of the resulting active site. ACS Catal 7:7442–7455CrossRefGoogle Scholar
  48. 48.
    Espelid Ø, Børve KJ (2001) Theoretical analysis of d-d transitions for the reduced Cr/silica system. Catal Lett 75:49–54CrossRefGoogle Scholar
  49. 49.
    Espelid Ø, Børve KJ (2002) Theoretical analysis of CO adsorption on the reduced Cr/silica system. J Catal 205:177–190CrossRefGoogle Scholar
  50. 50.
    Damin A, Vitillo JG, Ricchiardi G, Bordiga S, Lamberti C, Groppo E, Zecchina A (2009) Modeling CO and N2 adsorption at Cr surface species of Phillips catalyst by hybrid density functionals: effect of Hartree-Fock exchange percentage. J Phys Chem A 113:14261–14269PubMedCrossRefGoogle Scholar
  51. 51.
    Demmelmaier CA, White RE, van Bokhoven JA, Scott SL (2008) Nature of ≡SiOCrO2Cl and (≡SiO)2CrO2 sites prepared by grafting CrO2Cl2 onto silica. J Phys Chem C 112:6439–6449CrossRefGoogle Scholar
  52. 52.
    Demmelmaier CA, White RE, van Bokhoven JA, Scott SL (2009) Evidence for a chromasiloxane ring size effect in Phillips (Cr/SiO2) polymerization catalysts. J Catal 262:44–56CrossRefGoogle Scholar
  53. 53.
    Zhong L, Lee M-Y, Liu Z, Wanglee Y-J, Liu B, Scott SL (2012) Spectroscopic and structural characterization of Cr(II)/SiO2 active site precursors in model Phillips polymerization catalysts. J Catal 293:1–12CrossRefGoogle Scholar
  54. 54.
    Handzlik J, Kurleto K (2013) Assessment of density functional methods for thermochemistry of chromium oxo compounds and their application in a study of chromia-silica system. Chem Phys Lett 561–562:87–91CrossRefGoogle Scholar
  55. 55.
    Handzlik J (2009) DFT study of molybdena-silica system—a selection of density functionals based on their performance in thermochemistry of molybdenum compounds. Chem Phys Lett 469:140–144CrossRefGoogle Scholar
  56. 56.
    Cheng R, Liu X, Fang Y, Terano M, Liu B (2017) High-resolution 29Si CP/MAS solid state NMR spectroscopy and DFT investigation on the role of geminal and single silanols in grafting chromium species over Phillips Cr/silica catalyst. Appl Catal A Gen 543:26–33CrossRefGoogle Scholar
  57. 57.
    Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surfaces A Physicochem Eng Asp 173:1–38CrossRefGoogle Scholar
  58. 58.
    Ek S, Root A, Peussa M, Niinistö L (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379:201–212CrossRefGoogle Scholar
  59. 59.
    Lillehaug S, Børve KJ, Sierka M, Sauer J (2004) Catalytic dehydrogenation of ethane over mononuclear Cr(III) surface sites on silica. Part I. C-H activation by σ-bond metathesis. J Phys Org Chem 17:990–1006CrossRefGoogle Scholar
  60. 60.
    Lillehaug S, Jensen VR, Børve KJ (2006) Catalytic dehydrogenation of ethane over mononuclear Cr(III)-silica surface sites. Part 2: C-H activation by oxidative addition. J Phys Org Chem 19:25–33CrossRefGoogle Scholar
  61. 61.
    Liu Z, Cheng R, He X, Wu X, Liu B (2012) DFT functional benchmarking on the energy splitting of chromium spin states and mechanistic study of acetylene cyclotrimerization over the Phillips Cr(II)/silica catalyst. J Phys Chem A 116:7538–7549PubMedCrossRefGoogle Scholar
  62. 62.
    Liu Z, Cheng R, He X, Liu B (2013) Reactivity and regioselectivity of methylacetylene cyclotrimerization over the Phillips Cr/silica catalyst: a DFT study. ACS Catal 3:1172–1183CrossRefGoogle Scholar
  63. 63.
    Espelid Ø, Børve KJ (2000) Theoretical models of ethylene polymerization over a mononuclear chromium(II)/silica site. J Catal 195:125–139CrossRefGoogle Scholar
  64. 64.
    Espelid Ø, Børve KJ (2002) Molecular-level insight into Cr/silica Phillips-type catalysts: polymerization-active mononuclear chromium sites. J Catal 205:366–374CrossRefGoogle Scholar
  65. 65.
    Espelid Ø, Børve KJ (2002) Molecular-level insight into Cr/silica Phillips-type catalysts: polymerization-active dinuclear chromium sites. J Catal 206:331–338CrossRefGoogle Scholar
  66. 66.
    Potter KC, Beckerle CW, Jentoft FC, Schwerdtfeger E, McDaniel MP (2016) Reduction of the Phillips catalyst by various olefins: stoichiometry, thermochemistry, reaction products and polymerization activity. J Catal 344:657–668CrossRefGoogle Scholar
  67. 67.
    Zhong L, Liu Z, Cheng R, Tang S, Qiu P, He X, Terano M, Liu B (2012) Active site transformation during the induction period of ethylene polymerization over the Phillips CrOx/SiO2 catalyst. ChemCatChem 4:872–881CrossRefGoogle Scholar
  68. 68.
    Liu B, Nakatani H, Terano M (2003) Mechanistic implications of the unprecedented transformations of ethene into propene and butene over Phillips CrOx/SiO2 catalyst during induction period. J Mol Catal A: Chem 201:189–197CrossRefGoogle Scholar
  69. 69.
    Conley MP, Delley MF, Siddiqi G, Lapadula G, Norsic S, Monteil V, Safonova OV, Copéret C (2014) Polymerization of ethylene by silica-supported dinuclear CrIII sites through an initiation step involving C-H bond activation. Angew Chem Int Ed 53:1872–1876CrossRefGoogle Scholar
  70. 70.
    Conley MP, Delley MF, Núñez-Zarur F, Comas-Vives A, Copéret C (2015) Heterolytic activation of C-H bonds on CrIII-O surface sites is a key step in catalytic polymerization of ethylene and dehydrogenation of propane. Inorg Chem 54:5065–5078PubMedCrossRefGoogle Scholar
  71. 71.
    Gierada M, Handzlik J (2017) Active sites formation and their transformations during ethylene polymerization by the Phillips CrOx/SiO2 catalyst. J Catal 352:314–328CrossRefGoogle Scholar
  72. 72.
    Delley MF, Praveen CS, Borosy AP, Núñez-Zarur F, Comas-Vives A, Copéret C (2017) Olefin polymerization on Cr(III)/SiO2: mechanistic insights from the differences in reactivity between ethene and propene. J Catal 354:223–230CrossRefGoogle Scholar
  73. 73.
    Fong A, Peters B, Scott SL (2016) One-electron-redox activation of the reduced Phillips polymerization catalyst, via alkylchromium(IV) homolysis: a computational assessment. ACS Catal 6:6073–6085CrossRefGoogle Scholar
  74. 74.
    Kissin YV, Brandolini AJ (2008) Chemistry of olefin polymerization reactions with chromium-based catalysts. J Polym Sci Part A Polym Chem 46:5330–5347CrossRefGoogle Scholar
  75. 75.
    Fong A, Vandervelden C, Scott SL, Peters B (2018) Computational support for Phillips catalyst initiation via Cr-C bond homolysis in a chromacyclopentane site. ACS Catal 8:1728–1733CrossRefGoogle Scholar
  76. 76.
    Gierada M, Handzlik J (2018) Computational insights into reduction of the Phillips CrOx/SiO2 catalyst by ethylene and CO. J Catal 359:261–271CrossRefGoogle Scholar
  77. 77.
    Shelimov BN, Elev IV, Kazansky VB (1986) Use of photoreduction for activation of silica-molybdena catalysts for propylene metathesis: comparison with thermal reduction. J Catal 98:70–81CrossRefGoogle Scholar
  78. 78.
    Vikulov KA, Elev IV, Shelimov BN, Kazansky VB (1989) IR and UV-vis spectroscopic studies of the stable Mo=CH2 carbene complexes over photoreduced silica-molybdena catalysts with chemisorbed cyclopropane, and their role in olefin metathesis reactions. J Mol Catal 55:126–145CrossRefGoogle Scholar
  79. 79.
    Zhang B, Liu N, Lin Q, Jin D (1991) The effects of Mo oxidation states on olefin metathesis. J Mol Catal 65:15–28CrossRefGoogle Scholar
  80. 80.
    Handzlik J, Ogonowski J, Stoch J, Mikołajczyk M, Michorczyk P (2006) Properties and metathesis activity of molybdena-alumina, molybdena-silica-alumina and molybdena-silica catalysts—a comparative study. Appl Catal A Gen 312:213–219CrossRefGoogle Scholar
  81. 81.
    Balcar H, Mishra D, Marceau E, Carrier X, Žilková N, Bastl Z (2009) Molybdenum oxide catalysts for metathesis of higher 1-alkenes via supporting MoO2(acetylacetonate)2 and MoO2(glycolate)2 on SBA-15 mesoporous molecular sieves. Appl Catal A Gen 359:129–135CrossRefGoogle Scholar
  82. 82.
    Amakawa K, Wrabetz S, Kröhnert J, Tzolova-Müller G, Schlögl R, Trunschke A (2012) In situ generation of active sites in olefin metathesis. J Am Chem Soc 134:11462–11473PubMedCrossRefGoogle Scholar
  83. 83.
    Amakawa K, Kröhnert J, Wrabetz S, Frank B, Hemmann F, Jäger C, Schlögl R, Trunschke A (2015) Active sites in olefin metathesis over supported molybdena catalysts. ChemCatChem 7:4059–4065CrossRefGoogle Scholar
  84. 84.
    Lwin S, Wachs IE (2014) Olefin metathesis by supported metal oxide catalysts. ACS Catal 4:2505–2520CrossRefGoogle Scholar
  85. 85.
    Ding K, Gulec A, Johnson AM, Drake TL, Wu W, Lin Y, Weitz E, Marks LD, Stair PC (2016) Highly efficient activation, regeneration, and active site identification of oxide-based olefin metathesis catalysts. ACS Catal 6:5740–5746CrossRefGoogle Scholar
  86. 86.
    Banares MA, Fierro JLG, Moffat JB (1993) The partial oxidation of methane on MoO3/SiO2 catalysts: influence of the molybdenum content and type of oxidant. J Catal 142:406–417CrossRefGoogle Scholar
  87. 87.
    Ohler N, Bell AT (2005) Selective oxidation of methane over MoOx/SiO2: isolation of the kinetics of reactions occurring in the gas phase and on the surfaces of SiO2 and MoOx. J Catal 231:115–130CrossRefGoogle Scholar
  88. 88.
    Ohler N, Bell AT (2006) Study of the elementary processes involved in the selective oxidation of methane over MoOx/SiO2. J Phys Chem B 110:2700–2709PubMedCrossRefGoogle Scholar
  89. 89.
    Thielemann JP, Hess C (2012) Structure of silica-supported molybdenum oxide studied by in situ spectroscopy under reactive and non-reactive conditions. J Catal 288:124–126CrossRefGoogle Scholar
  90. 90.
    Thielemann JP, Hess C (2013) Monitoring silica supported molybdenum oxide catalysts at work: a Raman spectroscopic study. ChemPhysChem 14:441–447PubMedCrossRefGoogle Scholar
  91. 91.
    Ono T, Anpo M, Kubokawa Y (1986) Catalytic activity and structure of MoO3 highly dispersed on SiO2. J Phys Chem 90:4780–4784CrossRefGoogle Scholar
  92. 92.
    Banares MA, Hu HC, Wachs IE (1994) Molybdena on silica catalysts: role of preparation methods on the structure-selectivity properties for the oxidation of methanol. J Catal 150:407–420CrossRefGoogle Scholar
  93. 93.
    Zhang W, Desikan A, Oyama ST (1995) Effect of support in ethanol oxidation on molybdenum oxide. J Phys Chem 99:14468–14476CrossRefGoogle Scholar
  94. 94.
    Biermann JJP, Janssen FJJG, Ross JRH (1992) Nitrogen containing species as intermediates in the oxidation of ammonia over silica supported molybdena catalysts. Appl Catal A Gen 86:165–179CrossRefGoogle Scholar
  95. 95.
    Hu H, Wachs IE, Bare SR (1995) Surface structures of supported molybdenum oxide catalysts: characterization by Raman and Mo L3-edge XANES. J Phys Chem 99:10897–10910CrossRefGoogle Scholar
  96. 96.
    Takenaka S, Tanaka T, Funabiki T, Yoshida S (1998) Structures of molybdenum species in silica-supported molybdenum oxide and alkali-ion-modified silica-supported molybdenum oxide. J Phys Chem B 102:2960–2969CrossRefGoogle Scholar
  97. 97.
    Radhakrishnan R, Reed C, Oyama ST, Seman M, Kondo JN, Domen K, Ohminami Y, Asakura K (2001) Variability in the structure of supported MoO3 catalysts: studies using Raman and X-ray absorption spectroscopy with ab initio calculations. J Phys Chem B 105:8519–8530CrossRefGoogle Scholar
  98. 98.
    Ohler N, Bell AT (2005) A study of the redox properties of MoOx/SiO2. J Phys Chem B 109:23419–23429PubMedCrossRefGoogle Scholar
  99. 99.
    Tian H, Roberts CA, Wachs IE (2010) Molecular structural determination of molybdena in different environments: aqueous solutions, bulk mixed oxides, and supported MoO3 catalysts. J Phys Chem C 114:14110–14120CrossRefGoogle Scholar
  100. 100.
    Wachs IE, Roberts CA (2010) Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev 39:5002–5017PubMedCrossRefGoogle Scholar
  101. 101.
    Guo CS, Hermann K, Hävecker M, Thielemann JP, Kube P, Gregoriades LJ, Trunschke A, Sauer J, Schlögl R (2011) Structural analysis of silica-supported molybdena based on X-ray spectroscopy: quantum theory and experiment. J Phys Chem C 115:15449–15458CrossRefGoogle Scholar
  102. 102.
    Thielemann JP, Kröhnert J, Hess C (2010) Nitric oxide adsorption and oxidation on SBA-15 supported molybdenum oxide: a transmission IR study. J Phys Chem C 114:17092–17098CrossRefGoogle Scholar
  103. 103.
    Thielemann JP, Ressler T, Walter A, Tzolova-Müller G, Hess C (2011) Structure of molybdenum oxide supported on silica SBA-15 studied by Raman, UV-Vis and X-ray absorption spectroscopy. Appl Catal A Gen 399:28–34CrossRefGoogle Scholar
  104. 104.
    Amakawa K, Sun L, Guo C, Hävecker M, Kube P, Wachs IE, Lwin S, Frenkel AI, Patlolla A, Hermann K, Schlögl R, Trunschke A (2013) How strain affects the reactivity of surface metal oxide catalysts. Angew Chem Int Ed 52:13553–13557CrossRefGoogle Scholar
  105. 105.
    Louis C, Che M (1987) EPR investigation of the coordination sphere of Mo5+ ions on thermally reduced silica-supported molybdenum catalysts prepared by the grafting method. J Phys Chem 91:2875–2883CrossRefGoogle Scholar
  106. 106.
    Chempath S, Zhang Y, Bell AT (2007) DFT studies of the structure and vibrational spectra of isolated molybdena species supported on silica. J Phys Chem C 111:1291–1298CrossRefGoogle Scholar
  107. 107.
    Gregoriades LJ, Döbler J, Sauer J (2010) Oxidation of methanol to formaldehyde on silica-supported molybdena: density functional theory study on models of mononuclear sites. J Phys Chem C 114:2967–2979CrossRefGoogle Scholar
  108. 108.
    Chempath S, Bell AT (2007) A DFT study of the mechanism and kinetics of methane oxidation to formaldehyde occurring on silica-supported molybdena. J Catal 247:119–126CrossRefGoogle Scholar
  109. 109.
    Handzlik J (2005) Metathesis activity and properties of Mo-alkylidene sites differently located on silica. A density functional theory study. J Phys Chem B 109:20794–20804PubMedCrossRefGoogle Scholar
  110. 110.
    Handzlik J (2007) Application of the ONIOM (QM/QM) method in the study of molybdena–silica system active in olefin metathesis. Int J Quantum Chem 107:2111–2119CrossRefGoogle Scholar
  111. 111.
    Handzlik J (2007) Theoretical investigations of isolated Mo(VI) and Mo(IV) centers of a molybdena-silica catalyst for olefin metathesis. J Phys Chem C 111:9337–9348CrossRefGoogle Scholar
  112. 112.
    Handzlik J, Ogonowski J (2002) DFT study of ethene metathesis proceeding on monomeric MoVI centres of MoO3/Al2O3 catalyst. The role of the molybdacyclobutane intermediate. J Mol Catal A: Chem 184:371–377CrossRefGoogle Scholar
  113. 113.
    Handzlik J (2004) Metathesis activity of monomeric Mo-methylidene centres on (1 0 0) and (1 1 0)C surfaces of γ-Al2O3—a comparative DFT study. Surf Sci 562:101–112CrossRefGoogle Scholar
  114. 114.
    Handzlik J, Ogonowski J, Tokarz-Sobieraj R (2005) Dependence of metathesis activity of Mo-methylidene sites on their location on (1 0 0) γ-Al2O3—a theoretical study. Catal Today 101:163–173CrossRefGoogle Scholar
  115. 115.
    Handzlik J (2007) Properties and metathesis activity of monomeric and dimeric Mo centres variously located on γ-alumina—a DFT study. Surf Sci 601:2054–2065CrossRefGoogle Scholar
  116. 116.
    Handzlik J, Sautet P (2008) Active sites of olefin metathesis on molybdena-alumina system: a periodic DFT study. J Catal 256:1–14CrossRefGoogle Scholar
  117. 117.
    Handzlik J, Czernecki M, Shiga A, Śliwa P (2012) Paired interacting orbitals (PIO) study of Mo/SiO2 and Mo/HZSM-5 catalysts for olefin metathesis. Comput Theor Chem 991:174–181CrossRefGoogle Scholar
  118. 118.
    Goldsmith BR, Sanderson ED, Bean D, Peters B (2013) Isolated catalyst sites on amorphous supports: a systematic algorithm for understanding heterogeneities in structure and reactivity. J Chem Phys 138:204105PubMedCrossRefGoogle Scholar
  119. 119.
    Ewing CS, Bagusetty A, Patriarca EG, Lambrecht DS, Veser G, Johnson JK (2016) Impact of support interactions for single-atom molybdenum catalysts on amorphous silica. Ind Eng Chem Res 55:12350–12357CrossRefGoogle Scholar
  120. 120.
    Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A Chem 213:39–45CrossRefGoogle Scholar
  121. 121.
    Lwin S, Li Y, Frenkel AI, Wachs IE (2016) Nature of WOx sites on SiO2 and their molecular structure-reactivity/selectivity relationships for propylene metathesis. ACS Catal 6:3061–3071CrossRefGoogle Scholar
  122. 122.
    Lwin S, Wachs IE (2017) Catalyst activation and kinetics for propylene metathesis by supported WOx/SiO2 catalysts. ACS Catal 7:573–580CrossRefGoogle Scholar
  123. 123.
    Howell JG, Li Y-P, Bell AT (2016) Propene metathesis over supported tungsten oxide catalysts: a study of active site formation. ACS Catal 6:7728–7738CrossRefGoogle Scholar
  124. 124.
    de Lucas A, Valverde JL, Cañizares P, Rodriguez L (1999) Partial oxidation of methane to formaldehyde over W/SiO2 catalysts. Appl Catal A Gen 184:143–152CrossRefGoogle Scholar
  125. 125.
    Adam F, Iqbal A (2011) The liquid phase oxidation of styrene with tungsten modified silica as a catalyst. Chem Eng J 171:1379–1386CrossRefGoogle Scholar
  126. 126.
    Liu G, Wang X, Wang X, Han H, Li C (2012) Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica. J Catal 293:61–66CrossRefGoogle Scholar
  127. 127.
    Ross-Medgaarden EI, Wachs IE (2007) Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy. J Phys Chem C 111:15089–15099CrossRefGoogle Scholar
  128. 128.
    Chauvin J, Thomas K, Clet G, Houalla M (2015) Comparative influence of surface tungstate species and bulk amorphous WO3 particles on the acidity and catalytic activity of tungsten oxide supported on silica. J Phys Chem C 119:12345–12355CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyCracow University of TechnologyKrakówPoland

Personalised recommendations