Skip to main content

DETECTOR: Automatic Detection System for Terrorist Attack Trajectories

  • Conference paper
  • First Online:
Information Management and Big Data (SIMBig 2018)

Abstract

To guarantee national security against terrorist attacks or organized crime, states must implement homeland security solutions based on ubiquitous systems to know in advance the number of suspects involved in an attack. This work proposes a method, which combines popular trajectory similarity metrics to estimate the number of attackers participating in a malicious act through the analysis of the trajectories described by the attacker’s cell phone connection to antennas (i.e. Call Detail Records). Therefore, measuring trajectory similarity in CDRs generates different challenges compared to those similar metrics applied over GPS and video datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DETECTOR Website: github.com/bitmapup/detector.

References

  1. Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden Markov models. IEEE Trans. Image Process. 16(7), 1912–1919 (2007)

    Article  MathSciNet  Google Scholar 

  2. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

    Article  MathSciNet  Google Scholar 

  3. Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 521–524, August 2004

    Google Scholar 

  4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  5. Fan, H., Yao, W.: A trajectory prediction method with sparsity data. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 1261–1265. IEEE (2017)

    Google Scholar 

  6. Feng, Z., Zhu, Y.: A survey on trajectory data mining: techniques and applications. IEEE Access 4, 2056–2067 (2016)

    Article  Google Scholar 

  7. Ferreira, N., Klosowski, J.T., Scheidegger, C.E., Silva, C.T.: Vector field k-means: clustering trajectories by fitting multiple vector fields. In: Computer Graphics Forum, vol. 32, pp. 201–210. Wiley Online Library (2013)

    Google Scholar 

  8. Furtado, A., Alvares, L., Pelekis, N., Theodoridis, Y., Bogorny, V.: Unveiling movement uncertainty for robust trajectory similarity analysis. Int. J. Geogr. Inf. Sci. 32, 1–29 (2017)

    Google Scholar 

  9. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Show me how you move and i will tell you who you are. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS, SPRINGL 2010, pp. 34–41. ACM, New York (2010)

    Google Scholar 

  10. Hu, W., Xie, D., Fu, Z., Zeng, W., Maybank, S.: Semantic-based surveillance video retrieval. IEEE Trans. Image Process. 16(4), 1168–1181 (2007)

    Article  MathSciNet  Google Scholar 

  11. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  12. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 285–289. ACM, New York (2000)

    Google Scholar 

  13. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM (2007)

    Google Scholar 

  14. Liu, L.X., Song, J.T., Guan, B., Wu, Z.X., He, K.J.: Tra-dbscan: a algorithm of clustering trajectories. In: Applied Mechanics and Materials, vol. 121, pp. 4875–4879, Trans Tech Publications (2012)

    Google Scholar 

  15. Mao, Y., Zhong, H., Xiao, X., Li, X.: A segment-based trajectory similarity measure in the urban transportation systems. Sensors 17(3), 524 (2017)

    Article  Google Scholar 

  16. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  17. Rayatidamavandi, M., Zhuang, Y., Rahnamay-Naeini, M.: A comparison of hash-based methods for trajectory clustering. In: 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence & Computing, 3rd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 107–112. IEEE (2017)

    Google Scholar 

  18. Sharif, M., Alesheikh, A., Tashayo, B.: Similarity measure of trajectories using contextual information and fuzzy approach, January 2018

    Google Scholar 

  19. Sharif, M., Alesheikh, A.A.: Context-awareness in similarity measures and pattern discoveries of trajectories: a context-based dynamic time warping method. GIScience Remote Sens. 54(3), 426–452 (2017)

    Article  Google Scholar 

  20. Toohey, K., Duckham, M.: Trajectory similarity measures. SIGSPATIAL Spec. 7(1), 43–50 (2015)

    Article  Google Scholar 

  21. Vlachos, M., Gunopulos, D., Kollios, G.: Robust similarity measures for mobile object trajectories. In: Proceedings of 13th International Workshop on Database and Expert Systems Applications, pp. 721–726, September 2002

    Google Scholar 

  22. Wang, Y., Wang, L., Li, Y., He, D., Liu, T.Y., Chen, W.: A theoretical analysis of NDCG type ranking measures. CoRR abs/1304.6480 (2013)

    Google Scholar 

  23. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 1135–1138. IEEE (2006)

    Google Scholar 

  24. Zolotarev, V.M.: One-Dimensional Stable Distributions, vol. 65. American Mathematical Society, Providence (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Nunez-del-Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoyos, I., Esposito, B., Nunez-del-Prado, M. (2019). DETECTOR: Automatic Detection System for Terrorist Attack Trajectories. In: Lossio-Ventura, J., Muñante, D., Alatrista-Salas, H. (eds) Information Management and Big Data. SIMBig 2018. Communications in Computer and Information Science, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-030-11680-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11680-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11679-8

  • Online ISBN: 978-3-030-11680-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics