Skip to main content

Modeling of Elastic-Plastic Deformation Based on Updated Initial Configuration of Solid Body

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

  • 516 Accesses

Abstract

In this paper we discuss some modifications of the classical two-step algorithm (elastic-predictor, inelastic-corrector) usually called the radial return-map method. The neo-Hooke rheological model is employed in the analysis of elastic behavior instead of the Hooke model. The von Mises yield criterion \(-J_2 (\mathbf{S}) \le \sigma _s^2/3\) is used in the equivalent form \(-J_2 (\mathbf{B}_D) \le \sigma _s^2/(3\mu ^2)\). The main difference of the proposed algorithm in comparison with the traditional one is that in the simulations of plastic deformations we switch the emphasis from corrections of the stress tensor to irreversible corrections of the initial configuration of the solid body. The stress tensor is automatically corrected by this procedure. The implicit integration method is suggested for the correction of the initial configuration in the case of plastic flows. While changing the initial configuration, we automatically get plastic (irreversible) deformation at any time step. This algorithm allows us to calculate residual stresses in the elastic-plastic solid after removing the external load as a result of unloading after non-uniform plastic deformation. It is also used for an accurate simulation of deformations of both perfectly plastic and elastic-plastic solids with workhardening including the Bauschinger effect. Numerical examples show some advantages of the algorithm developed in this work for a springback problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfano, G., Angelis, F., Rosati, L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190, 5123–5147 (2001)

    Article  Google Scholar 

  2. Auricchio, F.: A viscoplastic constitutive equation bounded between two generalized plasticity models. Int. J. Plast. 13, 697–721 (1997)

    Article  Google Scholar 

  3. Auricchio, F.: A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. Int. J. Plast. 17, 971–990 (2001)

    Article  Google Scholar 

  4. Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143, 175–194 (1997)

    Article  Google Scholar 

  5. Bessonov, N., Golovashchenko, S.: Numerical simulation of pulsed electromagnetic stamping processes. In: Proceedings of 1st International Conference on High Speed Forming, pp. 83–91. Dortmund, Germany (2004)

    Google Scholar 

  6. Bessonov, N.M., Song, D.J.: Application of vector calculus to numerical simulation of continuum mechanics problems. J. Comput. Phys. 167(1), 22–38 (2001)

    Article  Google Scholar 

  7. Brünig, M.: Nonlinear finite element analysis based on a large strain deformation theory of plasticity. Comput. & Struct. 69, 117–128 (1998)

    Article  Google Scholar 

  8. Christensen, P.W.: A nonsmooth Newton method for elastoplastic problems. Comput. Methods Appl. Mech. Eng. 191, 1189–1219 (2002)

    Article  MathSciNet  Google Scholar 

  9. Düster, A., Rank, E.: A \(p\)-version finite element approach for two- and three-dimensional problems of the \(J_2\) flow theory with non-linear isotropic hardening. Int. J. Numer. Methods Eng. 53, 49–63 (2002)

    Article  Google Scholar 

  10. Elgamal, A., Yang, Z., Parra, E., Ragheb, A.: Modeling of cyclic mobility in saturated cohesionless soils. Int. J. Plast. 19, 883–905 (2003)

    Article  Google Scholar 

  11. Engelen, R.A.B., Geers, M.G.D., Baaijens, F.P.T.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19, 403–433 (2003)

    Article  Google Scholar 

  12. Fish, J., Shek, K.: Computational aspects of incrementally objective algorithms for large deformation plasticity. Int. J. Numer. Methods Eng. 44, 839–851 (1999)

    Article  Google Scholar 

  13. Fougeres, R., Sidoroff, F.: The evolutive masing model and its application to cyclic plasticity and ageing. Nucl. Eng. Des. 114, 273–284 (1989)

    Article  Google Scholar 

  14. Giarlet, P.G.: Mathematical elasticity, vol. 1. Three Dimensional Elasticity, Amsterdam, North-Holland (1993)

    Google Scholar 

  15. Golovashchenko, S., Bessonov, N.., Davies, R.: Analysis of blank-die contact interaction in pulsed forming processes. In: 3st International Conference on High Speed Forming, Germany (2008)

    Google Scholar 

  16. Golovashchenko, S., Bessonov, N.: Development of sharp flanging technology for aluminum panels. In: Proceedings of the 6th International Conference on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET 2005, Detroit, MI, pp. 687–690

    Google Scholar 

  17. Golovashchenko, S.F., Bessonov, N.M.: Numerical simulation of high-rate stamping of tubes and sheets. CRM Proc. Lect. Notes, Can. Math. Soc. 21, 199–207 (1998)

    Article  Google Scholar 

  18. Guo, J., Cox, J.V.: Implementation of a plasticity bond model for reinforced concrete. Comput. & Struct. 77, 65–82 (2000)

    Article  Google Scholar 

  19. Howell, B.P., Ball, G.J.: A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids. J. Comput. Phys. 175(1), 128–167 (2002)

    Article  Google Scholar 

  20. Kang, G., Ohno, N., Nebu, A.: Constitutive modeling of strain range dependent cyclic hardening. Int. J. Plast. 19, 1801–1819 (2003)

    Article  Google Scholar 

  21. Khan, A.S., Huang, S.: Continuum Theory of Plasticity. Wiley, New-York (1995)

    Google Scholar 

  22. Lin, R.C., Brocks, W.: On a finite strain viscoplastic theory based on a new internal dissipation inequality. Int. J. Plast. (2004). in print

    Google Scholar 

  23. Liu, C.S.: A consistent numerical scheme for the von Mises mixed-hardening constitutive equations. Int. J. Plast. (2004). in print

    Google Scholar 

  24. Lubarda, V.A.: Elastoplatcity Theory, p. 638. CRP Press, New York (2000)

    Google Scholar 

  25. Lubarda, V.A., Benson, D.J., Meyers, M.A.: Strain-rate effects in rheological models of inelastic response. Int. J. Plast. 19, 1097–1118 (2003)

    Article  Google Scholar 

  26. Mahnken, R.: Anisotropic creep modelling based on elastic projection operators with applications to CMSX-4 superalloy. Comput. Methods Appl. Mech. Eng. 191, 1611–1637 (2002)

    Article  Google Scholar 

  27. Marino, L., Saccomandi, G., Valente, C.: A note about three-dimentional exact dynamical solutions for new-Hookean materials. Int. J. Non-Linear Mech. 34, 1–4 (1999)

    Article  Google Scholar 

  28. Montáns, F.J.: Implicit algorithms for multilayer \(J_2\) plasticity. Comput. Methods Appl. Mech. Eng. 189, 673–700 (2000)

    Article  MathSciNet  Google Scholar 

  29. Papadopoulos, P., Lu, J.: On the formulation and numerical solution of problems in anisotropic finite plasticity. Comput. Methods Appl. Mech. Eng. 190, 4889–4910 (2001)

    Article  Google Scholar 

  30. Rubin, M.B., Bodner, S.R.: A three-dimensional nonlinear model for dissipative response of soft tissue. Int. J. Solids Struct. 39(19), 5081–5099 (2002)

    Article  Google Scholar 

  31. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    Google Scholar 

  32. Voyiadjis, G.Z., Abu Al-Rub, R.K.: Thermodynamic based model for the evolution equation of the backstress in cyclic plasticity. Int. J. Plast. 19, 2121–2147 (2003)

    Article  Google Scholar 

  33. Wilkins, M.L.: Calculation of elastic-plastic flow. In: Alder B., et al. (eds.) Methods in Computational Physics, vol. 3. Academic Press, New-York (1964)

    Google Scholar 

  34. Wilkins, M.L.: Computer Simulation of Dynamic Phenomena. Springer, Scientific Computation (1998)

    Google Scholar 

  35. Wu, H.C.: On finite plastic deformation of anisotropic metallic materials. Int. J. Plast. 19, 91–119 (2003a)

    Article  Google Scholar 

  36. Wu, H.C.: Effect of loading-path on the evolution of yield surface for anisotropic metals subjected to large pre-strain. Int. J. Plast. 19, 1773–1800 (2003b)

    Article  Google Scholar 

  37. Yoon, J.W., Barlat, F., Dick, R.E., Chung, K., Kang, T.J.: Plane stress yield function for aluminum alloy sheets-part II: FE formulation and its implementation. Int. J. Plast. 20, 495–522 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Frode Maaseidvaag, former Director of Ford Research Laboratory (USA), for his financial and emotional support of our research efforts. The authors would like to acknowledge professor François Sidoroff from Ecole Centrale de Lyon (France) for his help and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay M. Bessonov .

Editor information

Editors and Affiliations

A Notation

A Notation

An orthogonal basis for the 3D vector space is a set of orthogonal unit vectors \(\mathbf{{\vec {e}}}_i\) (\(i=1,2,3\)). We use here only fixed rectangular Cartesian coordinate system. The scalar product of any two of these vectors is

$$ \mathbf{{\vec {e}}}_k\cdot \mathbf{{\vec {e}}}_s = \delta _{ks}= \left\{ \begin{array}{rl} 1, &{} \text{ if } k = s, \\ 0, &{} \text{ if } k \ne s, \end{array} \right. $$

where \(\delta _{ks}\) is the Kronecker delta symbol. A vector (first-order tensor) \(\mathbf{{\vec {a}}}\) can be decomposed in the introduced basis as

$$ \mathbf{{\vec {a}}}= a_k\mathbf{{\vec {e}}}_k. $$

The usual summation convention is assumed over the repeated indices.

The dyadic product of the base vectors is the tensor \(\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s\). This tensor serves as a base tensor for the representation of a second-order tensor \(\mathbf{A}= A_{ks}\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s\). In particular, \(\mathbf{A}\cdot \mathbf{B}=A_{ij}\mathbf{{\vec {e}}}_i\mathbf{{\vec {e}}}_j\cdot B_{ks}\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s =A_{ij}B_{ks}\mathbf{{\vec {e}}}_i \delta _{jk}\mathbf{{\vec {e}}}_s =A_{ik}B_{ks}\mathbf{{\vec {e}}}_i\mathbf{{\vec {e}}}_s\) is the second-order tensor, \(\mathbf{A}\mathbf{B}=A_{ij}B_{ks}\mathbf{{\vec {e}}}_i\mathbf{{\vec {e}}}_j\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s\) is the fourth-order tensor, \(\mathbf{{\vec {a}}}\cdot \mathbf{A}=a_i\mathbf{{\vec {e}}}_i\cdot A_{ks}\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s = a_i A_{ks} \delta _{ik}\mathbf{{\vec {e}}}_s = a_k A_{ks} \mathbf{{\vec {e}}}_s\) is the vector, \(\mathbf{A}\cdot \cdot \mathbf{B}=A_{ij}\mathbf{{\vec {e}}}_i\mathbf{{\vec {e}}}_j\cdot \cdot B_{ks}\mathbf{{\vec {e}}}_k\mathbf{{\vec {e}}}_s =A_{ij}B_{ks}\delta _{jk}\delta _{is} = A_{sk}B_{ks}\) is the scalar.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bessonov, N.M. (2019). Modeling of Elastic-Plastic Deformation Based on Updated Initial Configuration of Solid Body. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics