Skip to main content

On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within

  • Chapter
  • First Online:
Dynamical Processes in Generalized Continua and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

In this chapter, we analyze the steady-state microscale fluid–structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena. The small scale of the physical system renders the flow field, under the power-law rheological model, amenable to a closed-form solution using the lubrication approximation. On the other hand, negligible shear stresses on the walls of a long vessel allow the structure to be treated as a pressure vessel. The constitutive equation for the microtube is prescribed via the strain energy functional for an incompressible, isotropic Mooney–Rivlin material. We employ both the thin- and thick-walled formulations of the pressure vessel theory, and derive the static relation between the pressure load and the deformation of the structure. We harness the latter to determine the flow rate–pressure drop relationship for non-Newtonian flow in thin- and thick-walled soft hyperelastic microtubes. Through illustrative examples, we discuss how a hyperelastic tube supports the same pressure load as a linearly elastic tube with smaller deformation, thus requiring a higher pressure drop across itself to maintain a fixed flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note, more importantly, that although in general we cannot expect to satisfy clamping BCs, i.e., \(\bar{u}_{\bar{r}}=\mathrm {d}\bar{u}_{\bar{r}}/\mathrm {d}\bar{z}=0\) at \(\bar{z}=0\) and \(\bar{z}=1\) in this leading-order analysis of deformation, we must respect the pressure outlet BC, i.e., \(\bar{p}(\bar{z}=1)=0\). From Eq. (19), it is then clear that the pressure BC requires that \(\bar{u}_{\bar{r}}(\bar{z}=1)=0\) as assumed.

References

  1. Abramian, A.K., Indejtsev, D.A., Vakulenko, S.A.: Wave localization in hydroelastic systems. Flow Turbul. Combust. 61, 1–20 (1998). https://doi.org/10.1023/A:1026484701275

    Article  MATH  Google Scholar 

  2. Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of generalized continua. In: Advanced Structured Materials, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19219-7 (2011)

    MATH  Google Scholar 

  3. Anand, V., Christov, I.C.: Steady low Reynolds number flow of a generalized Newtonian fluid through a slender elastic tube. arXiv:1810.05155 (2018)

  4. Anand, V., David JR, J., Christov, I.C.: Non-Newtonian fluid–structure interactions: static response of a microchannel due to internal flow of a power-law fluid. J Non-Newtonian Fluid Mech 264, 62–72 (2018). https://doi.org/10.1016/j.jnnfm.2018.12.008

    Article  MathSciNet  Google Scholar 

  5. Başar, Y., Weichert, D.: Nonlinear Continuum Mechanics of Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04299-1 (2000)

    Book  Google Scholar 

  6. Bird, R.B.: Useful non-Newtonian models. Annu. Rev. Fluid. Mech. 8, 13–34 (1976). https://doi.org/10.1146/annurev.fl.08.010176.000305

    Article  MATH  Google Scholar 

  7. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Dover Publications, Mineola, NY (1996)

    MATH  Google Scholar 

  8. Bonet, J., Wood, R.J.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, New York, NY (2008)

    Book  Google Scholar 

  9. Boyko, E., Bercovici, M., Gat, A.D.: Viscous-elastic dynamics of power-law fluids within an elastic cylinder. Phys. Rev. Fluids 2, 073301. https://doi.org/10.1103/PhysRevFluids.2.073301 (2017)

  10. Čanić, S., Mikelić, A.: Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Syst. 2, 431–463 (2003). https://doi.org/10.1137/S1111111102411286

    Article  MathSciNet  MATH  Google Scholar 

  11. Chien, S., Usami, S., Taylor, H.M., Lundberg, J.L., Gregersen, M.I.: Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J. Appl. Physiol. 21, 81–87 (1966). https://doi.org/10.1152/jappl.1966.21.1.81

    Article  Google Scholar 

  12. Dell’Isola, F., Eremeyev, V.A., Porubov, A. (eds.): Advances in mechanics of microstructured media and structures. In: Advanced Structured Materials, vol. 87. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-73694-5 (2018)

    MATH  Google Scholar 

  13. Dym, C.L.: Intoduction to the Theory of Shells. Hemisphere Publishing Corporation, New York, NY (1990)

    Google Scholar 

  14. Elbaz, S.B., Gat, A.D.: Dynamics of viscous liquid within a closed elastic cylinder subject to external forces with application to soft robotics. J. Fluid Mech. 758, 221–237 (2014). https://doi.org/10.1017/jfm.2014.527

    Article  MathSciNet  Google Scholar 

  15. Elbaz, S.B., Gat, A.D.: Axial creeping flow in the gap between a rigid cylinder and a concentric elastic tube. J. Fluid Mech. 806, 580–602 (2016). https://doi.org/10.1017/jfm.2016.587

    Article  MathSciNet  MATH  Google Scholar 

  16. Flügge, W.: Stresses in Shells. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01028-0 (1960)

    MATH  Google Scholar 

  17. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2257-4 (1993)

    Book  Google Scholar 

  18. Gay-Balmaz, F., Georgievskii, D., Putkaradze, V.: Stability of helical tubes conveying fluid. J. Fluids Struct. 78, 146–174 (2018). https://doi.org/10.1016/j.jfluidstructs.2017.12.020

    Article  Google Scholar 

  19. Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121–147 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.121918

    Article  MathSciNet  MATH  Google Scholar 

  20. Heil, M., Hazel, A.L.: Fluid-structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141–162 (2011). https://doi.org/10.1146/annurev-fluid-122109-160703

    Article  MathSciNet  MATH  Google Scholar 

  21. Hussain, M.A., Kar, S., Puniyani, R.R.: Relationship between power law coefficients and major blood constituents affecting the whole blood viscosity. J. Biosci. 24, 329–337 (1999). https://doi.org/10.1007/BF02941247

    Article  Google Scholar 

  22. Indeitsev, D.A., Osipova, E.V.: Nonlinear effects in trapped modes of standing waves on the surface of shallow water. Tech. Phys. 45, 1513–1517 (2000). https://doi.org/10.1134/1.1333186

    Article  Google Scholar 

  23. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. GitHub. http://www.scipy.org/ (2001)

  24. Kraus, H.: Thin Elastic Shells. Wiley, New York, NY (1967)

    MATH  Google Scholar 

  25. Lazopoulos, A., Tsangaris, S.: Flow of incompressible viscous fluid through a tube with non-linear elastic membrane insertion: applications. Eng. Appl. Comput. Fluid Mech. 2, 222–233 (2008a). https://doi.org/10.1080/19942060.2008.11015223

    Article  MATH  Google Scholar 

  26. Lazopoulos, A., Tsangaris, S.: Fluid flow of incompressible viscous fluid through a non-linear elastic tube. Arch. Appl. Mech. 78(11), 895–907 (2008b). https://doi.org/10.1007/s00419-008-0205-x

    Article  MATH  Google Scholar 

  27. Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press, New York, NY. https://doi.org/10.2277/0521849101 (2007)

  28. Liu, I.S.: A note on the Mooney-Rivlin material model. Continuum Mech. Thermodyn. 24(4–6), 583–590 (2012). https://doi.org/10.1007/s00161-011-0197-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Lurie, A.I.: Theory of Elasticity. Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-26455-2 (2005)

    Book  Google Scholar 

  30. Maugin, G.A., Metrikine, A.V. (eds): Mechanics of Generalized Continua: One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics, vol. 21. Springer Science+Business Media, LLC, New York, NY. https://doi.org/10.1007/978-1-4419-5695-8 (2010)

    Google Scholar 

  31. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. A 467, 3633–3646 (2011). https://doi.org/10.1098/rspa.2011.0281

    Article  MathSciNet  MATH  Google Scholar 

  32. Moon, H., Truesdell, C.: Interpretation of adscititious inequalities through the effects pure shear stress produces upon an isotropie elastic solid. Arch. Rational Mech. Anal. 55, 1–17 (1974). https://doi.org/10.1007/BF00282431

    Article  MathSciNet  MATH  Google Scholar 

  33. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending, 2nd edn. Springer Science+Business Media, Dordrecht. https://doi.org/10.1007/978-94-017-3034-1 (1977)

    Book  Google Scholar 

  34. Ogden, R.W.: Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  35. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, an imprint of Elsevier Inc., San Diego, CA (1998)

    Google Scholar 

  36. Panton, R.L.: Incompressible Flow, 4th edn. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118713075 (2013)

    Book  Google Scholar 

  37. Porubov, A.V., Velarde, M.G.: Strain kinks in an elastic rod embedded in a viscoelastic medium. Wave Motion 35, 189–204 (2002). https://doi.org/10.1016/S0165-2125(01)00101-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Raj, M.K., Chakraborty, J., DasGupta, S., Chakraborty, S.: Flow-induced deformation in a microchannel with a non-Newtonian fluid. Biomicrofluidics 12, 034116 (2018). https://doi.org/10.1063/1.5036632

    Article  Google Scholar 

  39. Shapiro, A.H.: Steady flow in collapsible tubes. ASME J. Biomech. Eng. 99, 126–147 (1977). https://doi.org/10.1115/1.3426281

    Article  Google Scholar 

  40. Vable, M.: Mechanics of Materials, 2nd edn. Expanding Educational Horizons, LLC, http://madhuvable.org/ (2009)

  41. Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009). https://doi.org/10.1063/1.3248476

    Article  Google Scholar 

  42. Whittaker, R.J., Heil, M., Jensen, O.E., Waters, S.L.: A rational derivation of a tube law from shell theory. Q. J. Mech. Appl. Math. 63, 465–496 (2010). https://doi.org/10.1093/qjmam/hbq020

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. National Science Foundation under grant No. CBET-1705637. We dedicate this work to the 70th anniversary of the director of the Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences: Prof. Dr. Sc. D. I. Indeitsev. We also thank Prof. Alexey Porubov for his kind invitation to contribute to this volume, and for his efforts in organizing it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan C. Christov .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we consider the flow rate–pressure drop relationship for steady flow of a power-law fluid within a linearly elastic, thick-walled pressure vessel of thickness t, and inner radius \(r_{i}=a\). The pressure vessel is subject only to an internal distributed pressure load p, with zero external pressure. Then, the state of stress evaluated at the inner radius (see [40]) is:

$$\begin{aligned} \sigma _{\theta \theta }&= \left( \frac{r_{o}^2+r_{i}^2}{r_{o}^2-r_{i}^2}\right) p,\end{aligned}$$
(46a)
$$\begin{aligned} \sigma _{rr}&= -p,\end{aligned}$$
(46b)
$$\begin{aligned} \sigma _{zz}&= \left( \frac{r_{i}^2}{r_{o}^2-r_{i}^2}\right) p. \end{aligned}$$
(46c)

The hoop strain is given by the constitutive equations of linear elasticity as:

$$\begin{aligned} \varepsilon _{\theta \theta } = \frac{u_r}{r_i}=\frac{1}{E}\big [\sigma _{\theta \theta }-\nu (\sigma _{zz}+\sigma _{rr})\big ]. \end{aligned}$$
(47)

Using Eqs. (46) and (47) yields

$$\begin{aligned} \frac{u_r}{r_i}= \frac{1}{E}\left[ \left( \frac{r_o^2+r_i^2}{r_o^2-r_i^2}\right) p - \nu \left( \frac{r_i^2}{r_o^2-r_i^2}-1\right) p\right] , \end{aligned}$$
(48)

which, upon using Eqs. (18) and (21), becomes

$$\begin{aligned} {\frac{u_r}{r_i} = \bar{t}\left[ \frac{(1+\bar{t})^2(1+\nu )+(1-2\nu )}{(1+\bar{t})^2-1}\right] \beta \bar{p}; \qquad \beta =\frac{\mathcal {P}_c}{E \bar{t}}.} \end{aligned}$$
(49)

After deformation, the inner radius is \({R}_{i}=r_i + u_{r}\) (where, initially, \(r_i=a\)). Thus, the dimensionless inner radius is

$$\begin{aligned} \bar{R}_i = \frac{r_i+u_r}{r_i} = 1+\frac{u_r}{r_i}=1+ \left[ \frac{(1+\bar{t})^2(1+\nu )+(1-2\nu )}{2 + \bar{t}}\right] \beta \bar{p}. \end{aligned}$$
(50)

Substituting the expression for \(\bar{R}_i\) from Eq. (50) into Eq. (33), we obtain an ODE for the dimensionless pressure \(\bar{p}\):

$$\begin{aligned} \frac{\mathrm {d}\bar{p}}{\mathrm {d}\bar{z}} = -2[(3+1/n)\bar{q}]^n\left( 1+ \mathfrak {K} \beta \bar{p}\right) ^{-(1+3n)}, \end{aligned}$$
(51)

where we have defined \(\mathfrak {K} := [(1+\bar{t})^2(1+\nu )+(1-2\nu )]/(2+\bar{t})\) for convenience. As usual, the ODE (51) is separable and subject to a pressure outlet BC [i.e., \(\bar{p}(1)=0\)], thus we obtain:

$$\begin{aligned} \bar{p}(\bar{z}) = \frac{1}{\mathfrak {K}\beta } \left( \left\{ 1 + 2(2+3n) \mathfrak {K}\beta [(3+1/n)\bar{q}]^n (1-\bar{z})\right\} ^{1/(2+3n)} - 1\right) . \end{aligned}$$
(52)

Then, the full pressure drop is simply \(\varDelta \bar{p}=\bar{p}(\bar{z}=0)\). Note that \({\mathfrak {K} = (1-\nu /2) + \mathcal {O}(\bar{t})}\), thus the expression for \(\varDelta \bar{p}\) based on Eq. (52) [i.e., Eq. (40) above] reduces to Eq. (39) (based on [3]) identically for thin shells (\(\bar{t}\ll 1\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, V., Christov, I.C. (2019). On the Deformation of a Hyperelastic Tube Due to Steady Viscous Flow Within. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics