Skip to main content

Stability Theory of Solitary Loops Propagating Along Euler’s Elastica

  • Chapter
  • First Online:
  • 494 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 103))

Abstract

The problem of dynamic stability of twist free solitary wave solutions of the equations describing oscillations of an inextensible elastic rod (Euler’s elastica) is treated. The governing equations describe sufficiently large displacements, though we are restricted to small strains. We show that under the condition of well-posedness of the initial value problem (in some specific sense) the family of solitary wave solutions is nonlinearly stable for two-dimensional perturbations not coming out from the plane of principal bending. The framework of the analysis is largely based on the spectral properties of the “linearized Hamiltonian” \({\mathscr {H}}\). We show that for planar perturbations \({\mathscr {H}}\) is positively semidefinite subject to a certain constraint, which implies the orbital stability. We consider also the case of perturbing the solitary wave by three-dimensional spatial perturbations. As a result of linearization about the solitary wave solution, we obtain an inhomogeneous scalar equation. This equation leads to a generalized eigenvalue problem. To establish the instability, we must verify the existence of an unstable eigenvalue (an eigenvalue with a positive real part). The corresponding proof of the instability is done using a local construction of the Evans function depending only on the spectral parameter. This function is analytic in the right half of the complex plane and has at least one zero on the positive real axis coinciding with an unstable eigenvalue of the generalized spectral problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kirchhoff, G.: Vorlezungen über mathematische Physic. Mechanik. Vorl. 28. Leipzig: D. G. Teubner (1876)

    Google Scholar 

  2. Clebsch, A.: Theorie der Elasticität Fester Körper. Leipzig: B. G. Teubner (1862)

    Google Scholar 

  3. Dill, E.H.: Kirchoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    Article  MathSciNet  Google Scholar 

  4. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  5. Coleman, B.D., Dill, E.H.: Flexure waves in elastic rods. J. Acoust. Soc. Am. 91, 2663–2673 (1992)

    Article  MathSciNet  Google Scholar 

  6. Coleman, B.D., Xu, J.M.: On the interaction of solitary waves of flexure in elastic rods. Acta Mech. 110, 173–182 (1995)

    Article  MathSciNet  Google Scholar 

  7. Coleman, B.D., Dill, E.H., Swigon, D.: On the dynamics of flexure and stretch in the theory of elastic rods. Arch. Ration. Mech. Anal. 129, 147–174 (1995)

    Article  MathSciNet  Google Scholar 

  8. Coleman, B., Dill, E.H., Lembo, M, Lu, Z. Tobias, I.: On the dynamics of rods in the theory of Kirchoff and Clebsch. Arch. Ration. Mech. Anal. 121, 339–359 (1993)

    Google Scholar 

  9. Beliaev, A., Il’ichev, A.: Conditional stability of solitary waves propagating in elastic rods. Phys. D. 90, 107–118 (1996)

    Article  MathSciNet  Google Scholar 

  10. Dichmann, D.J., Maddocks, J.H., Pego, R.L.: Hamiltonian dynamics of an elastica and the stability of solitary waves. Arch. Ration. Mech. Anal. 135, 347–396 (1996)

    Article  MathSciNet  Google Scholar 

  11. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  Google Scholar 

  12. Il’ichev, A.: Instability of solitary waves on Euler’s elastica. Z. Angew. Math. Phys. 57, 547–566 (2006)

    Article  MathSciNet  Google Scholar 

  13. Il’ichev, A.T., Tomashpolskii, V. Ja.: Instability of solitons under flexure and twist of an elastic rod. Theoret. Math. Phys. 172, 1206–1216 (2012)

    Google Scholar 

  14. Il’ichev, A.T.: Stability of Localized Waves in Nonlinearly Elastic Rods. Fizmatlit, Moscow (2009) [in Russian]

    Google Scholar 

  15. Antman, S.S., Liu, T.-P.: Travelling waves in hyperelastic rods. Quart. Appl. Math. 39, 377–399 (1979)

    Article  MathSciNet  Google Scholar 

  16. Alexander, J.C., Sachs, R.: Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World 2, 471–507 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Pego, R.L., Weinstein, M.I.: Eigenvalues, and instabilities of solitary waves. Phil. Trans. R. Soc. Lond. A 340, 47–94 (1992)

    Article  MathSciNet  Google Scholar 

  18. Evans, J.V.: Nerve axon equations, III: stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–594 (1972)

    Article  MathSciNet  Google Scholar 

  19. Jones, C.K.R.T.: Stability of the travelling wave solution of the FitzHugh-Nagumo system. Trans. Am. Math. Soc. 286, 431–469 (1984)

    Article  MathSciNet  Google Scholar 

  20. Alexander, J.C., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Kapitula, T.: The Evans function and generalized Melnikov integrals. SIAM J. Math. Anal. 30, 273–297 (1998)

    Article  MathSciNet  Google Scholar 

  22. Il’ichev, A.: Stability of solitary waves in nonlinear composite media. Phys. D. 150, 261–277 (2001)

    Article  MathSciNet  Google Scholar 

  23. Goriely, A., Tabor, A.M.: New amplitude equations for thin elastic rod. Phys. Rev. Lett. 77, 3537–3540

    Google Scholar 

  24. Lafortune, S., Lega, J.: Instability of local deformations of an elastic rod. Phys. D. 182, 103–124 (2003)

    Article  MathSciNet  Google Scholar 

  25. Lafortune, S., Lega, J.: Spectral stability of local deformations of an elastic rod: Hamiltonian formalizm. SIAM J. Math. Anal. 36, 1726–1741

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Il’ichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Il’ichev, A. (2019). Stability Theory of Solitary Loops Propagating Along Euler’s Elastica. In: Altenbach, H., Belyaev, A., Eremeyev, V., Krivtsov, A., Porubov, A. (eds) Dynamical Processes in Generalized Continua and Structures. Advanced Structured Materials, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-11665-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11665-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11664-4

  • Online ISBN: 978-3-030-11665-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics