Skip to main content

Upwind-Based Numerical Approximation of a Space-Time Fractional Advection-Dispersion Equation for Groundwater Transport Within Fractured Systems

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

Modelling groundwater transport in fractured aquifer systems is complex due to the uncertainty associated with delineating the specific fractures along which water and potential contaminants could be transported. The resulting uncertainty in modelled contaminant movement has implications for the protection of the environment, where inadequate mitigation or remediation measures could be employed. To improve the governing equation for groundwater transport modelling, the Atangana–Baleanu in Caputo sense (ABC) fractional derivative is applied to the advection-dispersion equation with a focus on the advection term to account for anomalous advection. Boundedness, existence and uniqueness for the developed advection-focused transport equation is presented. In addition, a semi-discretisation analysis is performed to demonstrate the equation stability in time. Augmented upwind schemes are investigated as they have been found to address stability problems when solute transport is advection-dominated. The upwind-based schemes are developed, and stability analysis conducted, to facilitate the solution of the complex equation. The numerical stability analysis found the upwind Crank–Nicolson to be the most stable, and is thus recommended for use with the ABC fractional advection-dispersion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch, D.L., Brady, J.F.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids 31(5), 965–973 (1988)

    Article  MATH  Google Scholar 

  2. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39(1), 1–11 (2003)

    Article  Google Scholar 

  3. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), 1–49 (2006)

    Article  Google Scholar 

  4. Singha, K., Day-Lewis, F.D., Lane, J.W.: Geoelectrical evidence of bicontinuum transport in groundwater. Geophys. Res. Lett. 34(12), 1–14 (2007)

    Article  Google Scholar 

  5. Zhang, Y., Papelis, C., Young, M.H., Berli, M.: Challenges in the application of fractional derivative models in capturing solute transport in porous media: Darcy-scale fractional dispersion and the influence of medium properties. Math. Probl. Eng. 1, 1–21 (2013)

    Google Scholar 

  6. Neuman, S.P., Tartakovsky, D.M.: Perspective on theories of non-Fickian transport in heterogeneous media. Adv. Water Resour. 32(5), 670–680 (2009)

    Article  Google Scholar 

  7. Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 32(4), 561–581 (2009)

    Article  Google Scholar 

  8. Sun, H., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)

    Article  Google Scholar 

  9. Allwright, A., Atangana, A.: Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities. Eur. Phys. J. Plus 133(2), 1–14 (2018)

    Article  Google Scholar 

  10. West, B.J.: Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, Florida (2016)

    MATH  Google Scholar 

  11. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic, New York (1974)

    MATH  Google Scholar 

  12. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publishing, Singapore (2011)

    Book  MATH  Google Scholar 

  13. Li, C., Qian, D., Chen, Y.: On riemann-liouville and caputo derivatives. Discret. Dyn. Nat. Soc. 1, 1–15 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  15. Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016)

    Article  Google Scholar 

  16. Yépez-Martínez, H., Gómez-Aguilar, J.F.: A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM). J. Comput. Appl. Math. 346, 247–260 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  18. Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  19. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Taneco-Hernández, M.A.: Fractional conformable derivatives of Liouville-Caputo type with low-fractionality. Phys. A Stat. Mech. Appl. 503, 424–438 (2018)

    Article  MathSciNet  Google Scholar 

  20. Atangana, A., Gómez-Aguilar, J.F.: Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws. Chaos Solitons Fractals 102, 285–294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, H., Hao, X., Zhang, Y., Baleanu, D.: Relaxation and diffusion models with non-singular kernels. Phys. A 468, 590–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmelling, S.G., Ross, RR.: Contaminant transport in fractured media: models for decision makers. (EPA Superfund) Issue Paper, Groundwater 28(2), 272–279 (1989)

    Google Scholar 

  23. Zimmerman, D.A., De Marsily, G., Gotway, C.A., Marietta, M.G., Axness, C.L., Beauheim, R.L., Gallegos, D.P.: A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour. Res. 34(6), 1373–1413 (1998)

    Article  Google Scholar 

  24. Fomin, S., Chugunov, V., Hashida, T.: The effect of non-Fickian diffusion into surrounding rocks on contaminant transport in a fractured porous aquifer. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2061), 2923–2939 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goode, D.J., Tiedeman, C.R., Lacombe, P.J., Imbrigiotta, T.E., Shapiro, A.M., Chapelle, F.H.: Contamination in fractured-rock aquifers: research at the former naval air warfare center, West Trenton, New Jersey, p. 3074 (2007)

    Google Scholar 

  26. Cello, P.A., Walker, D.D., Valocchi, A.J., Loftis, B.: Flow dimension and anomalous diffusion of aquifer tests in fracture networks. Vadose Zone J. 8(1), 258–268 (2009)

    Article  Google Scholar 

  27. Shapiro, A.M.: The challenge of interpreting environmental tracer concentrations in fractured rock and carbonate aquifers. Hydrogeol. J. 19(1), 9–12 (2011)

    Article  Google Scholar 

  28. Masciopinto, C., Palmiotta, D.: Flow and transport in fractured aquifers: new conceptual models based on field measurements. Transp. Porous Media 96(1), 117–133 (2013)

    Article  Google Scholar 

  29. Allwright, A., Atangana, A.: Augmented upwind numerical schemes for a fractional advection-dispersion equation in fractured groundwater systems. Discret. Contin. Dyn. Syst.-Ser. S 1, 1–14 (2018)

    Google Scholar 

  30. Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys 5(52), 1–17 (2017)

    Google Scholar 

  31. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–22 (2018)

    Article  Google Scholar 

  32. Alkahtani, B.S.T., Koca, I., Atangana, A.: New numerical analysis of Riemann-Liouville time-fractional Schrödinger with power, exponential decay, and Mittag-Leffler laws. J. Nonlinear Sci. Appl. 10(8), 4231–4243 (2017)

    Article  MathSciNet  Google Scholar 

  33. Allwright, A., Atangana, A.: Augmented upwind numerical schemes for the groundwater transport advection-dispersion equation with local operators. Int. J. Numer. Methods Fluids 87, 437–462 (2018)

    Article  MathSciNet  Google Scholar 

  34. Ewing, R.E., Wang, H.: A summary of numerical methods for time-dependent advection-dominated partial differential equations. J. Comput. Appl. Math. 128(1), 423–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Atangana, A.: On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. 293, 104–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gnitchogna, R., Atangana, A.: New two-step Laplace Adam-Bashforth method for integer a noninteger order partial differential equations. Numer. Methods Partial. Differ. Equ. 1, 1–20 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Atangana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allwright, A., Atangana, A. (2019). Upwind-Based Numerical Approximation of a Space-Time Fractional Advection-Dispersion Equation for Groundwater Transport Within Fractured Systems. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics