Skip to main content

On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation

  • Chapter
  • First Online:
Fractional Derivatives with Mittag-Leffler Kernel

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 194))

Abstract

The constructions of physically adequate forms of the diffusion equation with implementation of the Atangana–Baleanu derivative with Mittag-Leffler exponential kernel have been discussed. The specific form of the corresponding Atangana–Baleanu integral relates it directly to the fading memory concept, following the Boltzmann linear superposition principle with the standard Riemann-Liouville integral as the time-fading term. This approach relates the new fractional operators with non-singular kernel to the classical Riemann-Liouville integral. Using the concept of the fading memory and the specific form of the Atangana–Baleanu integral three forms of the diffusion equation have been investigated. The adequate definition of the flux to gradient relationship has been the main focus of the study resulting in two physically adequate formulations of the diffusion equation. The direct (formalistic) fractionalization of the classical diffusion equation results in physically inadequate relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  2. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to Heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Article  Google Scholar 

  3. Atangana, A., Gómez-Aguilar, J.F.: Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114, 516–535 (2018)

    Article  MathSciNet  Google Scholar 

  4. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, 1–21 (2018)

    Article  Google Scholar 

  5. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  Google Scholar 

  6. Boltzmann, L.: Zur Theorie der Elastischen Nachwirkung. Sitzungsber. Akad. Wiss. Wien. Mathem.- Naturwiss. 70, 275–300 (1874)

    Google Scholar 

  7. Caputo, M.: Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1969)

    Article  Google Scholar 

  8. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1, 73–85 (2015)

    Google Scholar 

  9. Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Progr. Fract. Differ. Appl. 2, 1–11 (2016)

    Article  Google Scholar 

  10. Coleman, B., Gurtin, M.E.: Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18, 188–208 (1967)

    Article  MathSciNet  Google Scholar 

  11. Coleman, B., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961)

    Article  MathSciNet  Google Scholar 

  12. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Qurashi, M.M.A.: Bateman-Feshbach tikochinsky and Caldirola-Kanai oscillators with new fractional differentiation. Entropy 19(2), 1–21 (2017)

    Article  Google Scholar 

  13. Fa, K.S., Lenzi, E.K.: Anomalous diffusion, solutions, and the first passage time: Influence of diffusion coefficient. Phys. Rev. E 71, 1–8 (2005)

    Article  Google Scholar 

  14. Fernandez, A., Baleanu, D.: The mean value theorem and Taylor’s theorem for fractional derivatives with Mittag-Leffler kernel. Adv. Diff. Eqs. 1, 1–18 (2018)

    MATH  Google Scholar 

  15. Fidley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Hollad, Amsterdam (1976)

    Google Scholar 

  16. Gómez-Aguilar, J.F.: Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A: Stat. Mech. Appl. 494, 52–75 (2018)

    Article  MathSciNet  Google Scholar 

  17. Gómez-Aguilar, J.F., Atangana, A.: New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications. Eur. Phys. J. Plus 132(1), 1–13 (2017)

    Article  Google Scholar 

  18. Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M.: Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. J. Electromagn. Waves Appl. 30(15), 1937–1952 (2016)

    Article  Google Scholar 

  19. Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, J.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circ. Theor. Appl. 1, 1–22 (2017)

    Google Scholar 

  20. Goodman, T.R.: Application of Integral Methods to Transient Nonlinear Heat Transfer. Advances in Heat Transfer, vol. 1, pp. 51–122. Academic Press, San Diego (1964)

    Google Scholar 

  21. Gurtin, M.E.: On the thermodynamics of materials with memory. Arch. Rational. Mech. Anal. 28, 40–50 (1968)

    Article  MathSciNet  Google Scholar 

  22. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  23. Havlin, S., Ben, Avraham D.: Diffusion in disordered media. Adv. Phys. 36, 695–798 (1987)

    Article  Google Scholar 

  24. Hristov, J.: Approximate solutions to time-fractional models by integral balance approach. In: Cattani, C., Srivastava, H.M., Yang, X.-J. (eds.) Fractional Dynamics, pp. 78–109. De Gruyter Open, Berlin (2015)

    Google Scholar 

  25. Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20, 765–770 (2016)

    Google Scholar 

  26. Hristov, J.: Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat Mass Transf. 52, 635–655 (2016)

    Article  Google Scholar 

  27. Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 21, 827–839 (2017)

    Article  Google Scholar 

  28. Hristov, J.: Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J. Vib. Control 23, 2795–2818 (2017)

    Article  MathSciNet  Google Scholar 

  29. Hristov, J.: Space-fractional diffusion with a potential power-law coefficient: transient approximate solution. Progr. Fract. Differ. Appl. 3, 119–139 (2017)

    Google Scholar 

  30. Hristov, J.: Transient space-fractional diffusion with a power-law superdiffusivity: approximate integral-balance approach. Fundam. Inform. 151, 371–388 (2017)

    Article  MathSciNet  Google Scholar 

  31. Hristov, J.: Fractional derivative with non-singular kernels: from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, pp. 269–342. Bentham Science Publishers, Sharjah (2017)

    Google Scholar 

  32. Hristov, J.: Integral-balance solution to nonlinear subdiffusion equation. In: Bhalekar, S. (ed.) Frontiers in Fractional Calculus, pp. 71–106. Bentham Science Publishers, Sharjah (2017)

    Google Scholar 

  33. Hughes, B.D.: Random Walks and Random Environments, vol. 1. Random Walks. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  34. Le Vot, F., Abad, E., Yuste, S.B.: Continuous time random walk model for anomalous diffusion in expanding media. Phys. Rev. E 1–11 (2017)

    Google Scholar 

  35. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  Google Scholar 

  36. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  37. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  38. Miller, R.K.: An integrodifferential equation for rigid heat conductors with memory. J. Math. Anal. Appl. 66, 313–332 (1978)

    Article  MathSciNet  Google Scholar 

  39. Nachlinger, R.R., Weeler, L.: A uniqueness theorem for rigid heat conductors with memory. Q. Appl. Math. 31, 267–273 (1973)

    Article  MathSciNet  Google Scholar 

  40. Nunciato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–273 (1971)

    Google Scholar 

  41. Nunciato, J.W.: On uniqueness in the linear theory of heat conduction with finite wave speds. SIAM J. Appl. Math. 25, 1–4 (1973)

    Article  MathSciNet  Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. Academic Press, San Diego, Calif, USA (1999)

    MATH  Google Scholar 

  43. Saad, K.M., Gómez-Aguilar, J.F.: Analysis of reaction diffusion system via a new fractional derivative with non-singular kernel. Phys. A: Stat. Mech. Appl. 509, 703–716 (2018)

    Article  MathSciNet  Google Scholar 

  44. Scott-Blair, G.W.: Analytical and integrative aspects of the stress-strain-time problem. J. Sci. Instrum. 21, 80–84 (1944)

    Article  Google Scholar 

  45. Storm, M.L.: Heat conduction in simple metals. J. Appl. Phys. 22, 940–951 (1951)

    Article  MathSciNet  Google Scholar 

  46. Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. 1, 1–16 (2017)

    Google Scholar 

  47. Volterra, V.: Theory of functional, English edn. Blackie and Son, London (1930)

    MATH  Google Scholar 

  48. Yuste, S.B., Lindenberg, K.: Comments on first passage time for anomalous diffusion. Phys. Rev. E 1–8 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan Hristov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hristov, J. (2019). On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation. In: Gómez, J., Torres, L., Escobar, R. (eds) Fractional Derivatives with Mittag-Leffler Kernel. Studies in Systems, Decision and Control, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-11662-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11662-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11661-3

  • Online ISBN: 978-3-030-11662-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics