Skip to main content

Injuries of the Pelvis and the Lower Extremities

  • Chapter
  • First Online:
Trauma Biomechanics

Abstract

Injuries to the lower extremities play a major role in sports such as soccer or skiing. They have also emerged as the most frequent non-minor injury resulting from frontal vehicle crashes. Since injuries of the extremities are often the reason for long-term impairment, occupant safety systems dedicated to protecting the extremities (e.g. vehicle knee airbags) have been introduced to the commercial market in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AIS (2015) The abbreviated injury scale dictionary 2015 revision. Association for the Advancement of Automotive Medicine, Chicago IL, USA

    Google Scholar 

  • Anderson K, Strickland S, Warren R (2001) Hip and groin injuries in athletes. Am J Sports Med 29(4):521–533

    Article  Google Scholar 

  • Arnoux P, Thollon L, Behr M, Brunet C, Cesari D (2006) Knee joint injury mechanisms and injury criteria in full scale tests according to impact position. In: Proceedings of IRCOBI conference, pp 319–330

    Google Scholar 

  • Autoliv (2003) Autoliv. http://www.autoliv.com. Accessed 14 Mar 2010

  • Bailey A, McMurry T, Poplin G, Salzar R, Crandall J (2015) Survival model for foot and leg high rate axial impact injury data. Traf Inj Prev 16:S96–S102

    Article  Google Scholar 

  • Beiner J, Jokl P (2002) Muscle contusion injury and myositis ossificans traumatica. Clin Orthop Relat Res 403S:S110–S119

    Article  Google Scholar 

  • Begeman P, Prasad P (1990) Human ankle impact response in dorsiflexion. In: Proceedings of 34th stapp car crash conference, pp 39–54

    Google Scholar 

  • Bere T, Flørenes T, Krosshaug T, Koga H, Nordsletten L, Irving C, Muller E, Reid R, Senner V, Bahr R (2011) Mechanisms of anterior cruciate ligament injury in world cup alpine skiing: a systematic video analysis of 20 cases. Am J Sports Med 39:1421–1429

    Article  Google Scholar 

  • Blankenbaker D, De Smet A (2010) Hip injuries in athletes. Radiol Clin N Am 48:1155–1178

    Article  Google Scholar 

  • Boles C, Ferguson C (2010) The female athlete. Radiol Clin N Am 48:1249–1266

    Article  Google Scholar 

  • Brun-Cassan F, Leung YC, Tarriere C, Fayon A, Patel A, Got C, Hureau J (1982) Determination of knee-femur-pelvis tolerance from the simulation of car frontal impacts. In: Proceedings of IRCOBI conference, pp 101–115

    Google Scholar 

  • Butler D, Kay M, Stouffer D (1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 19(6):425–432

    Article  Google Scholar 

  • Cappon H, van den Krooenberg A, Happee R, Wismans J (1999) An improved lower leg multibody model. In: Proceedings of IRCOBI conference, pp 499–509

    Google Scholar 

  • Cavanaugh J, Walilko T, Malhotra A, Zhu Y, King A (1990) Biomechanical response and injury tolerance of the pelvis in twelve sled side impact tests. In: Proceedings of 34th stapp car crash conference. SAE 902307

    Google Scholar 

  • Crandall J (2001) Crashworthiness and Biomechanics. In: Euromotor course. Göteborg, Sweden, 11–13 June 2001

    Google Scholar 

  • Crandall J, Portier L, Petit P, Hall G, Bass C, Klopp G, Hurwitz S, Pilkey W, Trosseille X, Tarriere C, Lassau J (1996) Biomechanical response and physical properties of the leg, foot, and ankle. SAE 962424

    Google Scholar 

  • Crandall J, Martin P, Sieveka E, Klopp G, Kuhlmann T, Pilkey W, Dischinger P, Burgess A, O’Quinn T, Schmidhauser C (1995) The influence of footwell intrusion on lower extremity response and injury in frontal crashes. In: Proceedings of 39th AAAM conference, pp 269–286

    Google Scholar 

  • De Blaiser C, Roosen Ph, Willems T, Danneels L, Vanden Bossche L, De Ridder R (2017) Is core stability a risk factor for lower extremity injuries in an athletic population? A systematic review. Phys Therapy in Sports 30:48–56

    Article  Google Scholar 

  • de Visser H, Reijman M, Heijboer M, Bos P (2012) Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med 46:124–130

    Article  Google Scholar 

  • Dugan S (2005) Sports-related knee injuries in female athletes: what gives? Am J Phys Med Rehabil 84(2):122–130

    Article  Google Scholar 

  • Egol K, Koval K, Kummer F, Frankel V (1998) Stress fractures of the femoral neck. Clin Orthop Relat Res 348:72–78

    Article  Google Scholar 

  • Francisco A, Nightingale R, Guilak F, Glisson R, Garrett W (2000) Comparison of soccer shin guards in preventing tibia fracture. Am J Sports Med 28(2):227–233

    Article  Google Scholar 

  • Funk J, Crandall J, Tourret L, MacMahon C, Bass C, Patrie J, Khaewpong N, Eppinger R (2002) The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J Biomech Eng 124:750–757

    Article  Google Scholar 

  • Gorissen P, Staat M, van Laack W (2012) Experimental measurement of forces as a contribution to evaluate the effectiveness of shin guards in soccer (article in German: Experimentelle Kraftmessungen als Beitrag zur Wirksamkeitsbeurteilung von Schienbeinschonern im Fußballsport). OUP Zeitschrift für die orthopädische und unfallchirurgische Praxis 1(1):10–15

    Google Scholar 

  • Håland Y, Hjerpe E, Lövsund P (1998) An inflatable carpet to reduce the loading of the lower extremities—evaluation by a new sled test method with toepan intrusion. In: Proceedings of ESV conference paper no. 98-S1-P-18E

    Google Scholar 

  • Hirsch A, White L (1965) Mechanical stiffness of man’s lower limbs. In: Proceedings of ASME winter congress

    Google Scholar 

  • Holden S, Boreham C, Delahunt E (2016) Sex differences in landing biomechanics and postural stability during adolescence: a systematic review with meta-analyses. Sports Med 46:241–253

    Article  Google Scholar 

  • Hunter R (1999) Skiing injuries. Am J Sports Med 27(3):381–389

    Article  Google Scholar 

  • Ivarsson J, Lesslex D, Kerrigan J, Bhalla K, Bose D, Crandall J, Kent R (2004) Dynamic response corridors and injury thresholds of the pedestrian lower extremities. In: Proceedings of IRCOBI conference, pp 179–191

    Google Scholar 

  • Kerrigan J, Ivarsson B, Bose D, Madeley N, Milliongton S, Bhalla K, Crandall J (2003) Rate-sensitive constitutive and failure properties of human collateral knee ligaments. In: Proceedings of IRCOBI conference, pp 177–90

    Google Scholar 

  • Kitagawa Y, Ichikawa H, King A, Levine R (1998a) A severe ankle and foot injury in frontal crashes and its mechanism. SAE 983145

    Google Scholar 

  • Kitagawa Y, Ichikawa H, Pal C, King A, Levine R (1998b) Lower leg injuries caused by dynamic axial loading and muscle tensing. In: Proceedings of ESV conference, paper no. 98-S7-O-09

    Google Scholar 

  • Kramer F (1998/2006) Passive Sicherheit von Kraftfahrzeugen. Vieweg Verlag, Braunschweig, Germany

    Google Scholar 

  • Lawn ND, Bamlet WR, Radhakrishnan K, O’Brien PC, So EL (2004) Injuries due to seizures in persons with epilepsy—a population-based study. Neurol 63:1565–1570

    Article  Google Scholar 

  • Levine R (2002) Injuries to the extremities. In: Nahum Melvin (ed) Accidental injury—biomechanics and prevention. Springer Publications, New York

    Google Scholar 

  • Majewski M, Habelt S, Steinbrück K (2006) Epidemiology of athletic knee injuries: a 10-year study. Knee 13:184–188

    Article  Google Scholar 

  • Majumder S, Roychowdhury A, Pal S (2008) Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element analysis. J Biomech 41:2834–2842

    Article  Google Scholar 

  • Mason-Mackay A, Whatman C, Reid D (2016) The effect of ankle bracing on lower extremity biomechanics during landing: a systematic review. J Sci Med Sport 19:531–540

    Article  Google Scholar 

  • McKay B, Bir C (2009) Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Society of Automotive Engineers. SAE technical paper no. -22-0009

    Google Scholar 

  • McMaster J, Parry M, Wallace W, Wheeler L, Owen C, Lowne R, Oakley C, Roberts A (2000) Biomechanics of ankle and hindfoot injuries in dynamic axial loading. In: Proceedings of 44th stapp car crash conference, paper no. 2000-01-SC23

    Google Scholar 

  • Meyer E, Haut R (2003) The effect of impact angle on knee tolerance to rigid impacts. Stapp Car Crash J 47:1–19

    Google Scholar 

  • Morrison K, Kaminski T (2007) Foot characteristics in association with inversion ankle injury. J Ath Train 42(1):135–142

    Google Scholar 

  • Murphy D, Connolly D, Beynnon B (2003) Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 37:13–29

    Article  Google Scholar 

  • Nie B, Zhou Q (2016) Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts. Traf Inj Prev 17(7):712–719

    Article  Google Scholar 

  • Nusholtz G, Alem N, Melvin J (1982) Impact response and injury to the pelvis. In: Proceedings of 26th stapp car crash conference. SAE 821160

    Google Scholar 

  • Opar D, Williams M, Shield A (2012) Hamstring strain injuries. Sports Med 42(3):209–226

    Article  Google Scholar 

  • Otte D (1999) Severity and mechanism of head impacts in car to pedestrian accidents. In: Proceedings of IRCOBI Conference, pp 329–341

    Google Scholar 

  • Otte D (2002) Unpublished evaluation of the MHH database

    Google Scholar 

  • Parenteau C, Viano D, Petit P (1998) Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. J Biomech Eng 120:105–111

    Article  Google Scholar 

  • Peterson L, Renström P (2002) Verletzungen im Sport. Deutscher Ärzte Verlag, Cologne, Germany

    Google Scholar 

  • Peterson J, Hölmich P (2005) Evidence based prevention of hamstring injuries in sport. Br J Sports Med 39:319–323

    Article  Google Scholar 

  • Petit P, Portier L, Foret-Bruno J, Trosseille X, Parenteau C, Coltat J, Tarriere C, Lassau J (1996) Quasistatic characterization of the human foot-ankle joints in a simulated tensed state and updated accidentological data. In: Proceedings of IRCOBI conference, pp 363–376

    Google Scholar 

  • Rishiraj N, Taunton J, Lloyd-Smith R, Woollard R, Regan W, Clement D (2009) The potential role of prophylactic/functional knee bracing in preventing knee ligament injury. Sports Med 39(11):937–960

    Article  Google Scholar 

  • Robinson J, Bull A, Amis A (2005) Structural properties of the medial collateral ligament complex of the human knee. J Biomech 38:1067–1074

    Article  Google Scholar 

  • Rudd R, Crandall J, Millington S, Hurwitz S, Höglund N (2004) Injury tolerance and response of the ankle joint in dynamic dorsiflexion. Stapp Car Crash J 48:1–26

    Google Scholar 

  • Rupp J (2015) Knee, thigh, and hip injury biomechanics. In: Yoganandan N, Nahum A, Melvin J (eds) Accidental injury—biomechanics and prevention. Springer Publications, New York

    Google Scholar 

  • Salzar R, Liewers W, Bailey A, Crandall J (2015) Leg, foot, and ankle injury biomechanics. In: Yoganandan N, Nahum A, Melvin J (eds) Accidental injury—biomechanics and prevention, Springer Publications, New York

    Google Scholar 

  • Schmitt K-U, Schlittler M, Boesiger P (2009) Biomechanical loading of the hip in side jumps of soccer goal keepers. J Sports Sci 28(1):53–59

    Article  Google Scholar 

  • Schmitt K-U, Nusser M, Derler S, Boesiger P (2008) Analysing the protective potential of padded soccer goalkeeper shorts. Br J Sports Med 44(6):426–429

    Article  Google Scholar 

  • Senter C, Hame SL (2006) Biomechanical analysis of tibial torque and knee flexion angle: implications for understanding knee injury. Sports Med 36(8):635–641

    Article  Google Scholar 

  • Snedeker J, Muser M, Walz F (2003) Assessment of pelvis and upper leg injury risk in car-pedestrian collisions: comparison of accident statistics, impactor tests and a human body finite element model. Stapp Car Crash J 47:437–457

    Google Scholar 

  • Simms C, Wood D (2009) Pedestrian and cyclist impact—a biomechanical perspective. Springer, Heidelberg, Germany. ISBN 978-90-481-2742-9

    Google Scholar 

  • Sobotta J (1997) Atlas der Anatomie des Menschen, Band 1 and 2. Urban und Schwarzenberg, München, Germany

    Google Scholar 

  • Sugimoto D, Myer G, Foss K, Pepin M, Micheli L, Hewett T (2016) Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis. Br J Sports Med 50:1259–1266

    Article  Google Scholar 

  • Sutton K, Bullock J (2013) Anterior cruciate ligament rupture: differences between males and females. J Am Acad Orthop Surg 21(1):41–50

    Article  Google Scholar 

  • Vetter D (2000) Seminar: biomechanik und dummy-technik, TU-Berlin

    Google Scholar 

  • Viano D, Lau I, Asbury C, King A, Begeman P (1989) Biomechanics of the human chest, abdomen, and pelvis in lateral impact. In: Proceedings of 33rd AAAM conference, pp 367–382

    Google Scholar 

  • Voos J, Mauro C, Wente T, Warren R, Wickiewicz T (2012) Posterior cruciate ligament: anatomy, biomechanics and outcomes. Am J Sports Med 20:222–231

    Article  Google Scholar 

  • Whiting W, Zernicke R (1998) Biomechanics of musculoskeletal injury. Human Kinetics Publisher, Champaign, USA

    Google Scholar 

  • Yamada H (1970) Strength of biological materials. R.E. Krieger Publ, New York

    Google Scholar 

  • Yoganandan N, Arun M, Pintar F, Szabo A (2014) Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts. Traf Inj Prev 15:151–56

    Google Scholar 

  • Yoganandan N, Pintar F, Boynton M, Begeman P, Prasad D, Kuppa S, Morgan R, Eppinger R (1996) Dynamic axial tolerance of the human foot-ankle complex. SAE 962426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Morrison III, B., Muser, M.H., Walz, F. (2019). Injuries of the Pelvis and the Lower Extremities. In: Trauma Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-11659-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11659-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11658-3

  • Online ISBN: 978-3-030-11659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics