Skip to main content

Methods in Trauma Biomechanics

  • Chapter
  • First Online:
Book cover Trauma Biomechanics

Abstract

Work in trauma biomechanics is subject to a number of limitations that are less stringent, or even totally absent, in other fields of the technical and life sciences. First, experiments involving loading situations with humans that could cause injury are excluded. Secondly, animal models are of limited use because of the difficulty of scaling trauma events reliably from animals up or down to humans. Questionable representativeness of animal models with respect to human biomechanics, in spite of some similarities, poses another problem. And finally, cost, public awareness and, above all, ethical considerations further limit how and what type of experiments can be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AIS (2015) The abbreviated injury scale dictionary 2015 revision. Association for the Advancement of Automotive Medicine, Chicago, IL, USA

    Google Scholar 

  • ASME (2006) Guide for verification and validation in computational solid mechanics. ASME V&V 10-2006: An American national standard. The American Society of Mechanical Engineers, New York, NY, USA

    Google Scholar 

  • Baker S, O’Neill B (1976) The injury severity score: an update. J Trauma 11:882–885

    Article  Google Scholar 

  • Bathe K (2007) Finite element procedures. Prentice-Hall, India. ISBN 978-8120310759

    MATH  Google Scholar 

  • Beason D, Dakin G, Lopez R, Alonso J, Bandak F, Eberhardt A (2003) Bone mineral density correlates with fracture load in experimental side impacts of the pelvis. J Biomech 36:219–227

    Article  Google Scholar 

  • Belytschko T, Liu W, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures, 2nd edn. Wiley Publ, Chicester, UK

    MATH  Google Scholar 

  • Campbell F, Woodford M, Yates D (1994) A comparison of injury impairment scale scores and physician’s estimates of impairment following injury to the head, abdomen and lower limbs. In: Proceedings of the 38th AAAM conference

    Google Scholar 

  • Carlsson A, Chang F, Lemmen P, Kullgren A, Schmitt K-U, Linder A, Svensson M (2012) EvaRID—a 50th percentile female rear impact finite element dummy model. In: Proceedings of IRCOBI conference, paper no. IRC-12-32, pp 249–262

    Google Scholar 

  • Carsten O, Day J (1988) Injury priority analysis. NHTSA technical report DOT HS 807 224

    Google Scholar 

  • Chawla M, Hildebrand F, Pape H, Giannoudis P (2004) Predicting outcome after multiple trauma: which scoring system? Injury 35:347–358

    Article  Google Scholar 

  • Cheng H, Obergefell L, Rizer A (1994) Generator of body (GEBOD) manual. Wright Patterson Air Force Base, USA

    Google Scholar 

  • Damm R, Schnottale B, Lorenz B (2006) Evaluation of the biofidelity of the WorldSID and the ES-2 on the basis of PMHS data. In: Proceedings of IRCOBI conference, pp 225–237

    Google Scholar 

  • Deng Y, Kong W, Ho H (1999) Development of a finite element human thorax model for impact injury studies. SAE technical paper series, 1999-01-0715

    Google Scholar 

  • Forbes P, Cronin D, Deng Y (2006) Multi-scale human body model to predict side impact thoracic trauma. Int J Crashworthiness 11(3):203–216

    Article  Google Scholar 

  • Fung Y (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gabler H, Weaver A, Stitzel J (2015) Automotive field data in injury biomechanics. In: Yoganandan N, Nahum AM, Melvin JW (eds) Accidental injury—biomechanics and prevention. Springer Publishing, New York

    Google Scholar 

  • Gayzik F, Moreno D, Geer C, Wuertzer S, Martin R, Stitzel J (2011) Development of a full body CAD dataset for computational modeling: a multi-modality approach. Ann Biomed Eng 39:2568–2583

    Article  Google Scholar 

  • Gierczycka D, Cronin D (2017) Occupant thorax response variations due to arm position and restraint systems in side impact crash scenarios. Accid Anal Prev 106:173–180

    Article  Google Scholar 

  • Gierczycka D, Watson B, Cronin D (2015) Investigation of occupant arm position and door properties on thorax kinematics in side impact crash scenarios, comparison of ATD and human models. Int J Crashworthiness 20(3):242–269

    Article  Google Scholar 

  • Gutsche A, Tomasch E, Sinz W, Levallois I, Alonso S, Lemmen P, Linder A, Steffan H (2013) Improve assessment and enhance safety for the evaluation of whiplash protection systems addressing male and female occupants in different seat configurations by introducing virtual methods in consumer tests. In: Proceedings of IRCOBI conference, paper no. IRC-13-16, pp 77–90

    Google Scholar 

  • Holzapfel G, Ogden R (2006) Mechanics of biological tissues. Springer Publishing, Berlin. ISBN 978-3-540-25194-1

    Book  Google Scholar 

  • Humanetics (2018) http://www.humaneticsatd.com/. Accessed 6 Oct 2018

  • Iwamoto M, Kisanuki Y, Watanabe I, Furusu K, Miki K, Hasegawa J (2002) Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction. In: Proceedings of IRCOBI conference, pp 31–42

    Google Scholar 

  • Khor F, Cronin D, Watson B, Gierczycka D, Malcolm S (2018) Importance of asymmetry and anisotropy in predicting cortical bone response and fracture using human body model femur in three-point bending and axial rotation. J Mech Behav Biomed Mater 87:213–229

    Article  Google Scholar 

  • Kitagawa Y, Hayashi S, Yamada K, Gotoh M (2017) Occupant kinematics in simulated autonomous driving vehicle collisions: influence of seating position, direction and angle. Stapp Car Crash J 61:101–155

    Google Scholar 

  • Linder A, Schick S, Hell W, Svensson M, Carlsson A, Lemmen P, Schmitt K-U, Gutsche A, Tomasch E (2013) ADSEAT—adaptive seat to reduce neck injuries for female and male occupants. Accid Anal Prev 60:334–343

    Article  Google Scholar 

  • Liu IS (2002) Continuum mechanics. Springer Publishing, Berlin. ISBN 978-3-540-43019-3

    Book  Google Scholar 

  • LSTC (2007) LS-DYNA Keyword User’s Manual (Version 971). LSTC, Livermore, California. http://lstc.com/pdf/ls-dyna_971_manual_k.pdf

  • Malliaris A (1985) Harm causation and ranking in car crashes. SAE 85090

    Google Scholar 

  • Mertz HJ, Irwin AL, Prasad P (2003) Biomechanical and scaling bases for frontal and side impact injury assessment reference values. Stapp Car Crash J 47:155–188

    Google Scholar 

  • Meyers M (1994) Dynamic behaviour of materials. Wiley, New York, USA

    Book  Google Scholar 

  • Muser M, Zellmer H, Walz F, Hell W, Langwieder K (1999) Test procedure for the evaluation of the injury risk to the cervical spine in a low speed rear end impact. Proposal for the ISO/TC22 N 2071/ISO/TC22/SC10 (collision test procedures)

    Google Scholar 

  • NHTSA (2018) Biomechanics test database. https://www.nhtsa.gov/. Accessed 17 Oct 2018

  • Niederer P (2010) Mathematical foundations of biomechanics. Crit Rev Biomed Eng 38(6):355–577

    Article  Google Scholar 

  • Ono K, Kaneoka K (1997) Motion analysis of human cervical vertebrae during low speed rear impacts by the simulated sled. In: Proceedings of IRCOBI conference, pp 223–237

    Google Scholar 

  • Roache P (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng 116(3):405

    Article  Google Scholar 

  • Schmitt K-U, Muser M, Walz F, Niederer P (2002) On the role of fluid-structure interaction in the biomechanics of soft tissue neck injuries. Traffic Inj Prev 3(1):65–73

    Article  Google Scholar 

  • Schmitt K-U, Muser M, Vetter D, Walz F (2003) Whiplash injuries: cases with a long period of sick leave need biomechanical assessment. Euro Spine 12(3):247–254

    Google Scholar 

  • Schmitt K-U, Beyeler F, Muser M, Niederer P (2004) A visco-elastic foam as head restraint material—experiments and numerical simulations using a BioRID model. Traffic Inj Prev 9(4):341–348

    Google Scholar 

  • Singh D, Cronin D (2017) Efficacy of visor and helmet for blast protection assessed using a computational head model. Shock Waves 27(6):905–918

    Article  Google Scholar 

  • Spitzer W, Skovron M, Salmi L, Cassiy J, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec Task Force on Whiplash Associated Disorders: redefining “whiplash” and its management. Spine 20(8S):3–73

    Google Scholar 

  • Stitzel J, Cormier J, Barretta J, Kennedy E, Smith E, Rath A, Duma S, Matsuoka F (2003) Defining regional variation in the material properties of human rib cortical bone and its effect on fracture prediction. Stapp Car Crash J 47:243–265

    Google Scholar 

  • Sutton M (2008) Digital image correlation for shape and deformation measurements. In: Sharpe W (ed) Springer Handbook of experimental solid mechanics. Springer Publishing, Boston, MA, USA

    Google Scholar 

  • TASS (2017) International MADYMO Dummy Models. https://tass.plm.automation.siemens.com/madymo-dummy-models

  • Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84

    Article  Google Scholar 

  • Thunert C (2012) CORA Release 3.6 User’s Manual. http://www.pdb-org.com/en/information/18-cora-download.html. Accessed 17 Oct 2018

  • van der Horst M (2002) Human head neck response in frontal, lateral and rear end impact loading—modelling and validation. PhD thesis, Eindhoven University of Technology. ISBN 90-386-2843-9

    Google Scholar 

  • Vavalle N, Davis M, Stitzel J, Gayzik S (2015) Quantitative validation of a human body finite element model using rigid body impacts. Ann Biomed Eng 43(9):2163–2174

    Article  Google Scholar 

  • Winkelstein B, Nightingale R, Richardson W, Myers B (2000) The cervical facet capsule and its role in whiplash injury: a biomechanical investigation. Spine 25(10):1238–1246

    Article  Google Scholar 

  • Yamada H (1970) Strength of biological materials. The Williams & Wilkins Company, Baltimore, Maryland, USA

    Google Scholar 

  • Yang K (2018) Basic finite element method as applied to injury biomechanics. Academic Press, USA. ISBN 9780128098325

    Google Scholar 

  • Zeidler F, Pletschen B, Mattern R, Alt B, Miksch T, Eichendorf W, Reiss S (1989) Development of a new injury cost scale. In: Proceedings of the 33rd annual conference on AAAM

    Google Scholar 

  • Zienkiewicz O, Taylor R (1994) The finite element method. McGraw-Hill Book Company, London. ISBN 0-07-084175-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitt, KU., Niederer, P.F., Cronin, D.S., Morrison III, B., Muser, M.H., Walz, F. (2019). Methods in Trauma Biomechanics. In: Trauma Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-11659-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11659-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11658-3

  • Online ISBN: 978-3-030-11659-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics