Skip to main content

Modelling the Mechanical Characteristics of Carbon Nanotubes: A Nonlocal Differential Approach

  • Chapter
  • First Online:
Computational Continuum Mechanics of Nanoscopic Structures

Abstract

Computational modelling of the mechanical characteristics of carbon nanotubes forms one of the most intensively studied topics in the nanomechanics field. The underlying motivation for this interest is evident. Carbon nanotubes, due to their unique and exotic mechanical properties, play a pivotal role in nanoscience and in all fields of nanotechnology, and in materials science and technology. A thorough understanding of their mechanical characteristics, including their static deformation properties, their buckling and vibrational behaviour, is therefore crucial for the design and construction of nanodevices. Owing to the extensive research output pertinent to the use of the nonlocal approach in modelling the mechanics of carbon nanotubes, we have divided the material in this chapter into two subsections; with the first subsection providing the mechanical characteristics of large aspect ratio SWCNTs, which are modelled using the nonlocal beam theories, while in the second subsection, we employ the nonlocal shell models to theoretically study the mechanical behaviour of carbon nanotubes. In the present chapter, we use the nonlocal differential approach owing to its wide and successful use in solving various mechanical problems related to carbon nanotubes. Some challenges facing the applications of the nonlocal differential approach to carbon nanotubes will be discussed in Chap. 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models. Comput. Mater. Sci. 24, 328–342 (2002)

    Article  Google Scholar 

  2. H. Rafii-Tabar, Computational Physics of Carbon Nanotubes (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  3. L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  4. J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  5. Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135 (2006)

    Article  Google Scholar 

  6. Q. Wang, K.M. Liew, Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Article  Google Scholar 

  7. P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289–5300 (2007)

    Article  Google Scholar 

  8. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  9. M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  10. R. Barretta, F.M. de Sciarra, A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 360935 (2013)

    Google Scholar 

  11. B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  12. H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  13. M.A. Eltaher, M.E. Khater, S.A. Emam, A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40, 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  14. H. Askari, D. Younesian, E. Esmailzadeh, L. Cveticanin, Nonlocal effect in carbon nanotube resonators: a comprehensive review. Adv. Mech. Eng. 9, 1–24 (2017)

    Article  Google Scholar 

  15. L. Behera, S. Chakraverty, Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: a review. Arch. Comput. Methods Eng. 24, 481–494 (2017)

    Article  MathSciNet  Google Scholar 

  16. S. Gopalakrishnan, S. Narendar, Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations (Springer, Switzerland, 2013)

    Book  Google Scholar 

  17. D. Karlicic, T. Murmu, S. Adhikari, M. McCarthy, Nonlocal Structural Mechanics (Wiley-ISTE, London, 2016)

    MATH  Google Scholar 

  18. C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)

    Article  Google Scholar 

  19. N. Khosravian, H. Rafii-Tabar, Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam. Nanotechnology 19, 275703 (2008)

    Article  Google Scholar 

  20. A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 41, 225404–225413 (2008)

    Article  Google Scholar 

  21. E. Ghavanloo, S.A. Fazelzadeh, Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Phys. E 44, 17–24 (2011)

    Article  Google Scholar 

  22. B. Motevalli, A. Montazeri, J.Z. Liu, H. Rafii-Tabar, Comparison of continuum-based and atomistic-based modeling of axial buckling of carbon nanotubes subject to hydrostatic pressure. Comput. Mater. Sci. 79, 619–626 (2013)

    Article  Google Scholar 

  23. R. Merli, C. Lázaro, S. Monleón, A. Domingo, A molecular structural mechanics model applied to the static behavior of single-walled carbon nanotubes: new general formulation. Comput. Struct. 127, 68–87 (2013)

    Article  Google Scholar 

  24. C.M. Wang, C.Y. Wang, J.N. Reddy, Exact Solutions for Buckling of Structural Members (CRC Press, Florida, 2005)

    Google Scholar 

  25. M.A. Maneshi, E. Ghavanloo, S.A. Fazelzadeh, Closed-form expression for geometrically nonlinear large deformation of nano-beams subjected to end force. Eur. Phys. J. Plus 133, 256 (2018)

    Article  Google Scholar 

  26. C.Q. Ru, Elastic models for carbon nanotubes, in Encyclopaedia of Nanoscience and Nanotechnology, vol. 2, ed. by H.S. Nalwa (American Scientific, Stevenson Ranch, 2004), pp. 731–744

    Google Scholar 

  27. M. Shaban, A. Alibeigloo, Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity. Lat. Am. J. Solids Struct. 11, 2122–2140 (2014)

    Article  Google Scholar 

  28. X.Q. He, C. Qu, Q.H. Qin, C.M. Wang, Buckling and postbuckling analysis of multi-walled carbon nanotubes based on the continuum shell model. Int. J. Struct. Stab. Dyn. 7, 629–645 (2007)

    Article  MathSciNet  Google Scholar 

  29. N. Silvestre, C.M. Wang, Y.Y. Zhang, Y. Xiang, Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1691 (2011)

    Article  Google Scholar 

  30. C.Y. Wang, L.C. Zhang, An elastic shell model for characterizing single-walled carbon nanotubes. Nanotechnology 19, 195704 (2008)

    Article  Google Scholar 

  31. E. Ghavanloo, S.A. Fazelzadeh, Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 36, 4988–5000 (2012)

    Article  Google Scholar 

  32. Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)

    Article  Google Scholar 

  33. Y.Y. Zhang, V.B.C. Tan, C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes. J. Appl. Phys. 100, 074304 (2006)

    Article  Google Scholar 

  34. C.M. Wang, Y.Y. Zhang, Y. Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804 (2010)

    Article  Google Scholar 

  35. D.D.T.K. Kulathunga, K.K. Ang, J.N. Reddy, Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. J. Phys. Condens. Matter 21, 435301 (2009)

    Article  Google Scholar 

  36. C.M. Wang, Z.Y. Tay, A.R. Chowdhuary, W.H. Duan, Y.Y. Zhang, N. Silvestre, Examination of cylindrical shell theories for buckling of carbon nanotubes. Int. J. Struct. Stab. Dyn. 11, 1035–1058 (2011)

    Article  Google Scholar 

  37. R. Ansari, S. Sahmani, H. Rouhi, Rayleigh–Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys. Lett. A 375, 1255–1263 (2011)

    Article  Google Scholar 

  38. L.F. Wang, Q.S. Zheng, J.Z. Liu, Q. Jiang, Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95, 105501 (2005)

    Article  Google Scholar 

  39. H.S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  40. V.N. Popov, Carbon nanotubes: properties and application. Mat. Sci. Eng. R 43, 61–102 (2004)

    Article  Google Scholar 

  41. M. Mitra, S. Gopalakrishnan, Vibrational characteristics of single-walled carbon-nanotube: time and frequency domain analysis. J. Appl. Phys. 101, 114320 (2007)

    Article  Google Scholar 

  42. V. Sundararaghavan, A. Waas, Non-local continuum modeling of carbon nanotubes: physical interpretation of non-local kernels using atomistic simulations. J. Mech. Phys. Solids 59, 1191–1203 (2011)

    Article  MathSciNet  Google Scholar 

  43. E. Ghavanloo, S.A. Fazelzadeh, H. Rafii-Tabar, Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int. Mater. Rev. 60, 312–329 (2015)

    Article  Google Scholar 

  44. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  Google Scholar 

  45. L. Li, T. Chang, Explicit solution for G-band mode frequency of single-walled carbon nanotubes. Acta Mech. Solida Sin. 22, 571–583 (2009)

    Article  Google Scholar 

  46. M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)

    Article  Google Scholar 

  47. H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Gruneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur. Phys. J. B 22, 307–320 (2001)

    Article  Google Scholar 

  48. J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)

    Article  Google Scholar 

  49. P.T. Araujo, P.B.C. Pesce, M.S. Dresselhaus, K. Sato, R. Saito, A. Jorio, Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Phys. E 42, 1251–1261 (2010)

    Article  Google Scholar 

  50. D. Zhang, J. Yang, M. Li, Y. Li, (\(n\), \(m\)) assignments of metallic single-walled carbon nanotubes by Raman spectroscopy: the importance of electronic Raman scattering. ACS Nano 10, 10789–10797 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A. (2019). Modelling the Mechanical Characteristics of Carbon Nanotubes: A Nonlocal Differential Approach. In: Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11650-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11650-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11649-1

  • Online ISBN: 978-3-030-11650-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics