Skip to main content

Elastic Properties of Carbon-Based Nanoscopic Structures

  • Chapter
  • First Online:
  • 588 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Despite the computational efficiency and the reasonable accuracy associated with the use of nonlocal elasticity theory, it requires a prior knowledge of the mechanical properties (e.g. elastic constants) and physical dimensions (e.g. effective thickness) of the system in order for the theory to be applied properly. Furthermore, there is no consent among different researchers regarding the choice of the nonlocal parameter. There has been disagreement on the adopted values of the nonlocal parameter and those of the mechanical properties, and as a result a number of inconsistencies are observed in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  2. S. Kasas, G. Dietler, Techniques for measuring microtubule stiffness. Curr. Nanosci. 3, 79–96 (2007)

    Article  Google Scholar 

  3. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)

    Article  Google Scholar 

  4. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)

    Article  Google Scholar 

  5. C. Li, T.W. Chou, A structural mechanics approach for analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  6. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instability beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  7. Y. Huang, J. Wu, K.C. Hwang, Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  Google Scholar 

  8. C.Y. Wang, L.C. Zhang, A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology 19, 75705 (2008)

    Article  Google Scholar 

  9. E. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  10. T. Vodenitcharova, L.C. Zhang, Effective wall thickness of a single-walled carbon nanotube. Phys. Rev. B 68, 165401 (2003)

    Article  Google Scholar 

  11. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    Article  Google Scholar 

  12. X. Zhou, J. Zhou, Z.C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692–13696 (2000)

    Article  Google Scholar 

  13. A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    Article  MATH  Google Scholar 

  14. J. Cai, C.Y. Wang, T. Yu, S. Yu, Wall thickness of single-walled carbon nanotubes and its Young’s modulus. Phys. Scr. 79, 025702 (2009)

    Article  Google Scholar 

  15. L.C. Zhang, On the mechanics of single-walled carbon nanotubes. J. Mater. Process. Technol. 209, 4223–4228 (2009)

    Article  Google Scholar 

  16. L. Shen, J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004)

    Article  Google Scholar 

  17. A. Montazeri, M. Sadeghi, R. Naghdabadi, H. Rafii-Tabar, Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites. Phys. Lett. A 375, 1588–1597 (2011)

    Article  Google Scholar 

  18. J. Wu, K.C. Hwang, Y. Huang, An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes. J. Mech. Phys. Solids 56, 279–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Peng, J. Wu, K.C. Hwang, J. Song, Y. Huang, Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. C.Q. Ru, Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math. Mech. Solids 14, 88–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Mu, M. Li, W. Wang, Z.C.O. Yang, Study of axial strain-induced torsion of single-wall carbon nanotubes using the 2D continuum anharmonic anisotropic elastic model. New J. Phys. 11, 113049 (2009)

    Article  Google Scholar 

  22. T. Chang, A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. Phys. Solids 58, 1422–1433 (2010)

    Article  MathSciNet  Google Scholar 

  23. T. Chang, H. Gao, Size dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  24. N.L. Allinger, Conformational analysis 130. MM2. A hydrocarbon force Held utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  Google Scholar 

  25. T. Chang, J. Geng, X. Guo, Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 462, 2523–2540 (2006)

    Article  MATH  Google Scholar 

  26. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  27. M. Aydogdu, Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int. J. Eng. Sci. 56, 17–28 (2012)

    Article  MATH  Google Scholar 

  28. W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  29. Y.J. Liang, Q. Han, Prediction of nonlocal scale parameter for carbon nanotubes. Sci. China Phys. Mech. 55, 1670–1678 (2012)

    Article  Google Scholar 

  30. C.Y. Wang, J. Zhang, Y.Q. Fei, T. Murmu, Circumferential nonlocal effect on vibrating nanotubules. Int. J. Mech. Sci. 58, 86–90 (2012)

    Article  Google Scholar 

  31. S. Narendar, D.R. Mahapatra, S. Gopalakrishnan, Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int. J. Eng. Sci. 49, 509–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Malagù, E. Benvenuti, A. Simone, One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: A molecular structural mechanics characterization. Eur. J. Mech. A Solids 54, 160–170 (2015)

    Article  MATH  Google Scholar 

  33. E. Ghavanloo, S.A. Fazelzadeh, Evaluation of nonlocal parameter for single-walled carbon nanotubes with arbitrary chirality. Meccanica 51, 41–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. L.F. Wang, H.Y. Hu, Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  35. Y.Q. Zhang, G.R. Liu, X.Y. Xie, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  36. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  37. Y.Y. Zhang, V.B.C. Tan, C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes. J. Appl. Phys. 100, 074304 (2006)

    Article  Google Scholar 

  38. G.Q. Xie, X. Han, G.R. Liu, S.Y. Long, Effect of small size-scale on the radial buckling pressure of a simply supported multiwalled carbon nanotube. Smart Mater. Struct. 15, 1143–1149 (2006)

    Article  Google Scholar 

  39. Y.G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56, 3475–3485 (2008)

    Article  MATH  Google Scholar 

  40. Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)

    Article  Google Scholar 

  41. R. Ansari, H. Rouhi, S. Sahmani, Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  42. W.H. Duan, N. Challamel, C.M. Wang, Z. Ding, Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams. J. Appl. Phys. 114, 104312 (2013)

    Article  Google Scholar 

  43. M. Amabili, Nonlinear Vibrations and Stability of Shells and Plates (Cambridge University Press, New York, 2008)

    Book  MATH  Google Scholar 

  44. K.N. Kudin, G.E. Scuseria, I.B. Yakobson, \(\text{C}_{2}\text{ F }\), BN and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001)

    Google Scholar 

  45. C.D. Reddy, S. Rajendran, K.M. Liew, Equilibrium continuum modeling of graphene sheets. Int. J. Nanosci. 4, 631–636 (2005)

    Article  Google Scholar 

  46. L.F. Wang, Q.S. Zheng, J.Z. Liu, Q. Jiang, Size dependence of the thin-wall models for carbon nanotubes. Phys. Rev. Lett. 95, 105501 (2005)

    Article  Google Scholar 

  47. A. Hemmasizadeh, M. Mahzoon, E. Hadi, R. Khandan, A method for developing the equivalent continuum model of a single layer graphene sheet. Solid Films 516, 7636–7640 (2008)

    Article  Google Scholar 

  48. A. Sakhaee-Pour, Elastic properties of single-layered graphene sheet. Solid State Commun. 149, 91–95 (2009)

    Article  Google Scholar 

  49. M.M. Shokrieh, R. Rafiee, Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater. Des. 31, 790–795 (2010)

    Article  Google Scholar 

  50. M. Arroyo, T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415 (2004)

    Google Scholar 

  51. M. Poot, H.S.J. van der Zant, Nanomechanical properties of few-layer graphene membranes. Appl. Phys. Lett. 92, 063111 (2008)

    Article  Google Scholar 

  52. F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20, 065709 (2009)

    Article  Google Scholar 

  53. Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B 405, 1301–1306 (2010)

    Article  Google Scholar 

  54. K.I. Alzebdeh, Evaluation of the in-plane effective elastic moduli of single-layered graphene sheet. Int. J. Mech. Mater. Des. 8, 269–278 (2012)

    Article  Google Scholar 

  55. K.I. Alzebdeh, An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Commun. 177, 25–28 (2014)

    Article  Google Scholar 

  56. A. Genoese, A. Genoese, N.L. Rizzi, G. Salerno, On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. 115, 316–329 (2017)

    Google Scholar 

  57. L. Shen, H.S. Shen, C.L. Zhang, Temperature-dependent elastic properties of single layer graphene sheets. Mater. Des. 31, 4445–4449 (2010)

    Article  Google Scholar 

  58. P. Steve, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 18 (2007)

    Google Scholar 

  59. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  Google Scholar 

  60. D. Kahn, K.W. Kim, M.A. Stroscio, Quantized vibrational modes of nanospheres and nanotubes in the elastic continuum model. J. Appl. Phys. 89, 5107 (2001)

    Article  Google Scholar 

  61. K. Behfar, R. Naghdabadi, Nanoscale modeling of an embedded multi-shell fullerene and its application to vibrational analysis. Int. J. Eng. Sci. 44, 1156–1163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  62. S. Adhikari, R. Chowdhury, Vibration spectra of fullerene family. Phys. Lett. A 375, 2166–2170 (2011)

    Article  Google Scholar 

  63. E. Ghavanloo, S.A. Fazelzadeh, Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech. Adv. Mater. Struc. 22, 597–603 (2015)

    Article  Google Scholar 

  64. R.S. Ruoff, A.L. Ruoff, Is C\(_{60}\) stiffer than diamond? Nature 350, 663–664 (1991)

    Google Scholar 

  65. R.S. Ruoff, A.L. Ruoff, The bulk modulus of C\(_{60}\) molecules and crystals: a molecular mechanics approach. Appl. Phys. Lett. 59, 1553–1555 (1991)

    Google Scholar 

  66. H. Shen, The compressive mechanical properties of C\(_{60}\) and endohedral M@C\(_{60}\) (M \(=\) Si, Ge) fullerene molecules. Mater. Lett. 60, 2050–2054 (2006)

    Google Scholar 

  67. H. Shen, The compressive mechanical properties of C\(_{n}\) (\(n\) = 20, 60, 80, 180) and endohedral M@C\(_{60}\) (M = Na, Al, Fe) fullerene molecules. Mol. Phys. 105, 2405–2409 (2007)

    Google Scholar 

  68. G.I. Giannopoulos, S.K. Georgantzinos, P.A. Kakavas, N.K. Anifantis, Radial stiffness and natural frequencies of fullerenes via a structural mechanics spring-based method. Fuller. Nanotub. Car. N. 21, 248–257 (2013)

    Article  Google Scholar 

  69. M. Jamal-Omidi, M. ShayanMehr, R. Rafiee, A study on equivalent spherical structure of buckyball-C\(_{60}\) based on continuum shell model. Lat. Am. J. Solids Stru. 13, 1016–1029 (2016)

    Google Scholar 

  70. E. Ghavanloo, R. Izadi, A. Nayebi, Computational modeling of the effective Young’s modulus values of fullerene molecules: a combined molecular dynamics simulation and continuum shell model. J. Mol. Model. 24, 71 (2018)

    Article  Google Scholar 

  71. Y. Wei, B. Wang, J. Wu, R. Yang, M.L. Dunn, Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13, 26–30 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A. (2019). Elastic Properties of Carbon-Based Nanoscopic Structures. In: Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11650-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11650-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11649-1

  • Online ISBN: 978-3-030-11650-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics