Skip to main content

Fundamental Tenets of Nanomechanics

  • Chapter
  • First Online:
  • 576 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

Nanoscience is concerned with the study and understanding of phenomena that manifest themselves at the nanoscale, and nanotechnology refers to the synthesis, control, engineering, and manipulation of atomistic and molecular systems and structures. The appearance of nanoscience and nanotechnology has prompted fundamental and radical changes in varieties of scientific and engineering disciplines. Among the diverse branches of the nanoscience, the study and characterization of mechanical behaviour of physical systems at nanoscale form an interdisciplinary and cross disciplinary area referred to as nanomechanics. This branch of nanoscience has emerged from the interplay of classical mechanics, quantum mechanics, solid-state physics, and materials physics and chemistry. Nanomechanics differs from macroscopic mechanics in various aspects, and contains many subfields such as mechanics of nanocomposites, molecular dynamics, molecular mechanics, design of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS), and cellular biomechanics (V. Harik (ed.), Trends in Nanoscale Mechanics, Springer, New York, 2014) [1]. Nanoscale mechanics provides the scientific foundation and the infrastructure for nanotechnology and nanoengineering. This subfield of nanoscience has witnessed an explosive growth worldwide over the past decades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Harik (ed.), Trends in Nanoscale Mechanics (Springer, New York, 2014)

    Google Scholar 

  2. G. Gao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (Imperial College Press, Singapore, 2004)

    Google Scholar 

  3. B. Wu, A. Heidelberg, J.J. Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005)

    Article  Google Scholar 

  4. M. Ashby, P. Ferreira, D. Schodek, Nanomaterials, Nanotechnologies and Design (Elsevier, Oxford, 2009)

    Google Scholar 

  5. R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)

    Google Scholar 

  6. Y. Gogodtsi (ed.), Nanomaterials Handbook (Taylor & Francis-CRC Press, Philadelphia, 2006)

    Google Scholar 

  7. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012)

    Article  Google Scholar 

  8. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)

    Article  Google Scholar 

  9. V.V. Pokropivny, V.V. Skorokhod, Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27, 990–993 (2007)

    Article  Google Scholar 

  10. H. Kroto, J. Heath, S. Obrien, R. Curl, R. Smalley, C60 Buckminsterfullerene. Nature 318, 162163 (1985)

    Article  Google Scholar 

  11. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  13. O.A. Shenderova, D.M. Gruen (eds.), Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew Publishing, New York, 2006)

    Google Scholar 

  14. H. Zhang, D. Ye, Y. Liu, A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of \(\text{C}_{60}\). J. Math. Chem. 48, 733–740 (2010)

    Google Scholar 

  15. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996)

    Chapter  Google Scholar 

  16. H. Rafii-Tabar, Computational Physics of Carbon Nanotubes (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  17. H. Terrones, M. Terrones, Curved nanostructured materials. New J. Phys. 5, 126.1–126.37 (2003)

    Google Scholar 

  18. S. Adhikari, R. Chowdhury, Vibration spectra of fullerene family. Phys. Lett. A 375, 2166–2170 (2011)

    Article  Google Scholar 

  19. L.V. Radushkevich, V.M. Lukyanovich, O structure ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom konarte (The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst). Zurn. Fisc. Chim. 26, 88–95 (1952)

    Google Scholar 

  20. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  Google Scholar 

  21. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  Google Scholar 

  22. V.N. Popov, Carbon nanotubes: properties and application. Mat. Sci. Eng. R 43, 61–102 (2004)

    Article  Google Scholar 

  23. H. Rafii-Tabar, E. Ghavanloo, S.A. Fazelzadeh, Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys. Rep. 638, 1–97 (2016)

    Article  MathSciNet  Google Scholar 

  24. J. Tersoff, R.S. Ruoff, Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73, 676–679 (1994)

    Article  Google Scholar 

  25. T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga, General sum rule for chiral index of coalescing ultrathin nanotubes. Phys. Rev. Lett. 89, 085901 (2002)

    Google Scholar 

  26. P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  27. W. Ruland, A.K. Schaper, H. Hou, A. Greiner, Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures. Carbon 41, 423–427 (2003)

    Article  Google Scholar 

  28. P. Delhaes, Graphite and Precursors (CRC Press, Amsterdam, 2001)

    Book  Google Scholar 

  29. M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10, 20–27 (2007)

    Article  Google Scholar 

  30. C. Srinivasan, Graphene-mother of all graphitic materials. Curr. Sci. 92, 1338–1339 (2007)

    Google Scholar 

  31. M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, Oxford, 2007)

    Google Scholar 

  32. T. Ikeshoji, B. Hafskjold, Y. Hashi, Y. Kawazoe, Molecular dynamics simulation for the cluster formation process of lennard-jones particles: magic numbers and characteristic features. J. Chem. Phys. 105, 5126–5137 (1996)

    Article  Google Scholar 

  33. V.Y. Shevchenko, A.E. Madison, Structure of nanoparticles: I. generalized crystallography of nanoparticles and magic numbers. Glass Phys. Chem. 28, 40–43 (2002)

    Google Scholar 

  34. R.L. Johnston, Atomic and Molecular Clusters (CRC Press, London, 2002)

    Google Scholar 

  35. J. Sarkar, G.G. Khan, A. Basumallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci. 30, 271–290 (2007)

    Article  Google Scholar 

  36. U. Cvelbar, Towards large-scale plasma-assisted synthesis of nanowires. J. Phys. D: Appl. Phys. 44, 174014 (2011)

    Article  Google Scholar 

  37. A. Paul, M. Luisier, G. Klimeck, Influence of cross-section geometry and wire orientation on the phonon shifts in ultra-scaled Si nanowires. J. Appl. Phys. 110, 094308 (2011)

    Article  Google Scholar 

  38. F. Daneshmand, E. Ghavanloo, M. Amabili, Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations. J. Biomech. 44, 1960–1966 (2011)

    Article  Google Scholar 

  39. D.D. Vvedensky, Multiscale modelling of nanostructures. J. Phys.: Condens. Matter 16, R1537–R1576 (2004)

    Google Scholar 

  40. A. Bartók-Pirtay, The Gaussian Approximation Potential: An Interatomic Potential Derived from First Principles Quantum Mechanics (Springer, London, 2010)

    Google Scholar 

  41. W.K. Liu, E.G. Karpov, S. Zhang, H.S. Park, An introduction to computational nanomechanics and materials. Comput. Methods Appl. Mech. Eng. 193, 1529–1578 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (John Wiley & Sons Ltd., New Jersey, 2006)

    Book  Google Scholar 

  43. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    Google Scholar 

  44. P.H. Hünenberger, Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 173, 105–149 (2005)

    Google Scholar 

  45. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  MathSciNet  Google Scholar 

  46. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  47. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  48. H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Phys. Rep. 325, 239–310 (2000)

    Article  Google Scholar 

  49. F. Irgens, Continuum Mechanics (Springer, Berlin, 2008)

    Google Scholar 

  50. H. Askes, A.V. Metrikine, Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42, 187–202 (2005)

    Article  MATH  Google Scholar 

  51. H.T. Thai, T.P. Vo, T.K. Nguyen, S.E. Kim, A review of continuum mechanics models for size-dependent analysis of beams and plates. Comput. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  52. R.D. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  53. R.A. Toupin, Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  55. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  57. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  58. A.C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  59. E. Kröner, Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  60. A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  61. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  62. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  63. E.C. Aifantis, On the gradient approach-relation to Eringens nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011)

    Google Scholar 

  64. C. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  65. A.J.A. Morgan, Some properties of media defined by constitutive equations in implicit form. Int. J. Eng. Sci. 4, 155–178 (1966)

    Article  MATH  Google Scholar 

  66. M. Tak, D. Park, T. Park, Computational coupled method for multiscale and phase analysis. J. Eng. Mater. Technol. 135, 021013 (2013)

    Article  Google Scholar 

  67. J. Fish (ed.), Multiscale Methods: Bridging the Scales in Science and Engineering (Oxford University Press, Oxford, 2009)

    Google Scholar 

  68. C.M. Wang, C.Y. Wang, J.N. Reddy, Exact Solutions for Buckling of Structural Members (CRC Press, Florida, 2005)

    Google Scholar 

  69. S.S. Rao, Vibration of Continuous Systems (John Wiley & Sons Inc., New Jersey, 2007)

    Google Scholar 

  70. E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications (CRC Press, New York, 2001)

    Google Scholar 

  71. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural exibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    Google Scholar 

  72. J.F. Waters, P.R. Guduru, M. Jouzi, J.M. Xu, T. Hanlon, S. Suresh, Shell buckling of individual multiwalled carbon nanotubes using nanoindentation. Appl. Phys. Lett. 87, 103109 (2005)

    Article  Google Scholar 

  73. S.C. Hung, Y.K. Su, T.H. Fang, S.J. Chang, L.W. Ji, Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16, 2203–2208 (2005)

    Article  Google Scholar 

  74. P.R. Guduru, Z. Xia, Shell buckling of imperfect multiwalled carbon nanotubes-experiments and analysis. Exp. Mech. 47, 153–161 (2007)

    Article  Google Scholar 

  75. H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7, 1149–1154 (2007)

    Article  Google Scholar 

  76. S.J. Young, L.W. Ji, S.J. Chang, T.H. Fang, T.J. Hsueh, Nanoindentation of vertical ZnO nanowires. Physica E 39, 240–243 (2007)

    Article  Google Scholar 

  77. S.Y. Ryu, J. Xiao, W.I. Park, K.S. Son, Y.Y. Huang, U. Paik, J.A. Rogers, Lateral buckling mechanics in silicon nanowires on elastomeric substrates. Nano Lett. 9, 3214–3219 (2009)

    Article  Google Scholar 

  78. J. Zhao, M.R. He, S. Dai, J.Q. Huang, F. Wei, J. Zhu, TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 49, 206–213 (2011)

    Article  Google Scholar 

  79. Y. Mao, W.L. Wang, D. Wei, E. Kaxiras, J.G. Sodroski, Graphene structures at an extreme degree of buckling. ACS Nano 5, 1395–1400 (2011)

    Article  Google Scholar 

  80. E. Duval, A. Boukenter, B. Champagnon, Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman scattering. Phys. Rev. Lett. 56, 2052–2055 (1986)

    Article  Google Scholar 

  81. M. Fujii, T. Nagareda, S. Hayashi, K. Yamamoto, Low-frequency Raman scattering from small silver particles embedded in SiO\({_2}\) thin films. Phys. Rev. B 44, 6243–6248 (1991)

    Article  Google Scholar 

  82. A. Tanaka, S. Onari, T. Arai, Low-frequency Raman scattering from CdS microcrystals embedded in a germanium dioxide glass matrix. Phys. Rev. B 47, 1237–1243 (1993)

    Article  Google Scholar 

  83. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams et al., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997)

    Article  Google Scholar 

  84. W. Ding, L. Calabri, X. Chen, K.M. Kohlhaas, R.S. Ruoff, Mechanics of crystalline boron nanowires. Compos. Sci. Technol. 66, 1112–1124 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavanloo, E., Rafii-Tabar, H., Fazelzadeh, S.A. (2019). Fundamental Tenets of Nanomechanics. In: Computational Continuum Mechanics of Nanoscopic Structures. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-11650-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11650-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11649-1

  • Online ISBN: 978-3-030-11650-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics