Skip to main content

Biodegradation of Petroleum Hydrocarbons in the Deep Sea

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

The Deepwater Horizon (DWH) discharge is unique in that it represents the first large spill that occurred in the deep sea, and unparalleled volumes of chemical dispersant were applied during emergency response efforts. Thus, the DWH incident raised new challenges with regard to predictions of petroleum hydrocarbon (PHC) biodegradation and the fate of discharged hydrocarbons in the deep sea, which is permanently cold (~4 °C) and exposed to high hydrostatic pressure (1 MPa per 100 m). Although extensive information is available on the rates and controls of PHC biodegradation in marine environments, relatively few studies have been conducted under conditions resembling the deep sea. In particular, hydrostatic pressure is a key environmental parameter that has been largely overlooked in biodegradation studies, due to methodological challenges and the difficulty to obtain samples. Considering the rapid expansion of oil and gas drilling into deeper waters, there is an urgent need to improve understanding of the influence of low temperature and high pressure on biodegradation in order to better constrain the fate of hydrocarbons in the deep sea. This chapter addresses the current understanding of deep sea PHC biodegradation, highlighting discoveries made during the scientific response to the DWH disaster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagby SC, Reddy CM, Aeppli C, Fisher GB, Valentine DL (2017) Persistence and biodegradation of oil at the ocean floor following Deepwater Horizon. Proc Natl Acad Sci 114(1):E9

    Article  CAS  Google Scholar 

  • Biddle JF, White JR, Teske AP, House CH (2011) Metagenomics of the subsurface Brazos-Trinity Basin (IODP site 1320): comparison with other sediment and pyrosequenced metagenomes. ISME J 5:1038–1047

    Article  CAS  Google Scholar 

  • Bowles MW, Samarkin VA, Joye SB (2011) Improved measurement of microbial activity in deep-sea sediments at in situ pressure and methane concentration. Limnol Oceanogr Methods 9(10):499–506. https://doi.org/10.4319/lom.2011.9.499

    Article  CAS  Google Scholar 

  • Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart GJ, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10:1–24

    Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330(6001):201–204. https://doi.org/10.1126/science.1195223

    Article  CAS  Google Scholar 

  • Case DH, Ijiri A, Morono Y, Tavormina P, Orphan VJ, Inagaki F (2017) Aerobic and anaerobic methanotrophic communities associated with methane hydrates exposed on the seafloor: a high-pressure sampling and stable isotope-incubation experiment. Front Microbiol 8:2569

    Article  Google Scholar 

  • Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle A, Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303

    Article  Google Scholar 

  • Crespo-Medina M, Meile CD, Hunter KS, Diercks AR, Asper VL, Orphan VJ, Joye SB (2014) The rise and fall of methanotrophy following a Deepwater oil-well blowout. Nat Geosci 7(6):423–427. https://doi.org/10.1038/ngeo2156

    Article  CAS  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33. https://doi.org/10.1016/j.ancene.2016.01.006

    Article  Google Scholar 

  • Deusner C, Meyer V, Ferdelman TG (2009) High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane. Biotechnol Bioeng:105. https://doi.org/10.1002/bit.22553

    Article  CAS  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, M. Piceno Y, Reid FC, Stringfellow WT, Tom LM (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Sci Technol 47(19):10860–10867

    Article  CAS  Google Scholar 

  • Fasca H, de Castilho LV, de Castilho JFM, Pasqualino IP, Alvarez VM, de Azevedo Jurelevicius D, Seldin L (2018) Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. MicrobiologyOpen 7(2):e00550

    Article  Google Scholar 

  • Ferguson RMW, Gontikaki E, Anderson JA, Witte U (2017) The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0–5 °C). Sci Rep 7(1):2253. https://doi.org/10.1038/s41598-017-02475-9

    Article  CAS  Google Scholar 

  • Grossi V, Yakimov MM, Ali BA, Tapilatu Y, Cuny P, Goutx M, LaCono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12(7):2020–2033. https://doi.org/10.1111/j.1462-2920.2010.02213.x

    Article  CAS  Google Scholar 

  • Hazen TC, Prince RC (2015) Marine oil biodegradation. Environ Sci Technol 50:2121–2129

    Article  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D'haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading Bacteria. Science 330(6001):204–208. https://doi.org/10.1126/science.1195979

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):17

    Article  CAS  Google Scholar 

  • Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5:566. https://doi.org/10.3389/fmicb.2014.00566

    Article  Google Scholar 

  • Horikoshi K (1998) Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol 1(3):291–295

    Article  CAS  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine — microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  Google Scholar 

  • Joye SB (2015) Deepwater Horizon, 5 years on. Science 349(6248):592–593. https://doi.org/10.1126/science.aab4133

    Article  CAS  Google Scholar 

  • Joye SB, MacDonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4(3):160–164. http://www.nature.com/ngeo/journal/v4/n3/abs/ngeo1067.html#supplementary-information

    Article  CAS  Google Scholar 

  • Joye SB, Teske AP, Kostka JE (2014) Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. Bioscience 64(9):766–777. https://doi.org/10.1093/biosci/biu121

    Article  Google Scholar 

  • Joye SB, Kleindienst S, Gilbert JA, Handley KM, Weisenhorn P, Overholt WA, Kostka JE (2016) Responses of microbial communities to hydrocarbon exposures. Oceanography 29(1):136–149

    Article  Google Scholar 

  • Joye S, Kleindienst S, Peña-Montenegro TD (2018) SnapShot: microbial hydrocarbon bioremediation. Cell 172(6):1336–1336.e1331. https://doi.org/10.1016/j.cell.2018.02.059

    Article  CAS  Google Scholar 

  • Kallmeyer J, Boetius A (2004) Effects of temperature and pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin. Appl Environ Microbiol 70(2):1231–1233. https://doi.org/10.1128/AEM.70.2.1231-1233.2004

    Article  CAS  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331(6015):312–315. https://doi.org/10.1126/science.1199697

    Article  CAS  Google Scholar 

  • Kimes NE, Callaghan AV, Suflita JM, Morris PJ (2014) Microbial transformation of the Deepwater Horizon oil spill – past, present, and future perspectives. Front Microbiol 5:603

    Article  Google Scholar 

  • King GM, Kostka JE, Hazen TC, Sobecky PA (2015) Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci 7:377–401. https://doi.org/10.1146/annurev-marine-010814-015543

    Article  CAS  Google Scholar 

  • Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015a) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci 112(48). https://doi.org/10.1073/pnas.1507380112

    Article  CAS  Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015b) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13(6):388–396. https://doi.org/10.1038/nrmicro3452

    Article  CAS  Google Scholar 

  • Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2015c) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J. https://doi.org/10.1038/ismej.2015.121

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Liu J, Bacosa HP, Liu Z (2017) Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the northern Gulf of Mexico. Front Microbiol 7:2131

    Article  Google Scholar 

  • Marietou A, Chastain R, Beulig F, Scoma A, Hazen TC, Bartlett DH (2018) The effect of hydrostatic pressure on enrichments of hydrocarbon degrading microbes from the Gulf of Mexico following the Deepwater Horizon oil spill. Front Microbiol 9:808

    Article  Google Scholar 

  • Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, Han J, Holman H-YN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6(9):1715–1727. https://doi.org/10.1038/ismej.2012.59

    Article  CAS  Google Scholar 

  • Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. ISME J 8(7):1464–1475

    Article  CAS  Google Scholar 

  • McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F (2012) Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20260–20267

    Article  Google Scholar 

  • Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118. https://doi.org/10.1159/000441358

    Article  CAS  Google Scholar 

  • Nguyen UT, Lincoln SA, Juárez AGV, Schedler M, Macalady JL, Müller R, Freeman KH (2018) The influence of pressure on crude oil biodegradation in shallow and deep Gulf of Mexico sediments. PloS one 13(7):e0199784

    Article  Google Scholar 

  • Norton CG, Suedmeyer J, Oderkerk B, Fieback TM (2014) High pressure and temperature optical flow cell for Near-Infra-Red spectroscopic analysis of gas mixtures. Rev Sci Instrum 85(5):053101. https://doi.org/10.1063/1.4873195

    Article  CAS  Google Scholar 

  • Nunoura T, Soffientino B, Blazejak A, Kakuta J, Oida H, Schippers A, Takai K (2009) Subseafloor microbial communities associated with rapid turbidite deposition in the Gulf of Mexico continental slope (IODP Expedition 308). FEMS Microbiol Ecol 69:410–424

    Article  CAS  Google Scholar 

  • Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010) Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Res II 57:2008–2021

    Article  CAS  Google Scholar 

  • Overholt W (2018) The response of marine benthic microbial populations to the Deepwater Horizon oil spill, Ph.D. Dissertation, Georgia Institute of Technology, pp 248

    Google Scholar 

  • Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301

    Article  Google Scholar 

  • Prince RC, Nash GW, Hill SJ (2016) The biodegradation of crude oil in the deep ocean. Mar Pollut Bull 111(1):354–357

    Article  CAS  Google Scholar 

  • Prince RC, Butler JD, Redman AD (2017) The rate of crude oil biodegradation in the sea. Environ Sci Technol 51(3):1278–1284

    Article  CAS  Google Scholar 

  • Quigg A, Passow U, Daly KL, Burd A, Hollander DJ, Schwing PT, Lee K (2020) Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) events: learning from the past to predict the future (Chap. 12). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Rahsepar S, Smit MPJ, Murk AJ, Rijnaarts HHM, Langenhoff AAM (2016) Chemical dispersants: oil biodegradation friend or foe? Mar Pollut Bull 108(1):113–119. https://doi.org/10.1016/j.marpolbul.2016.04.044

    Article  CAS  Google Scholar 

  • Rodriguez-r LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT (2015) Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J

    Google Scholar 

  • Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189. https://doi.org/10.1016/j.envpol.2017.05.019

    Article  CAS  Google Scholar 

  • Schedler M, Hiessl R, Valladares Juarez A, Gust G, Muller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4(1):77

    Article  Google Scholar 

  • Schwarz JR, Walker JD, Colwell RR (1974) Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 28(6):982–986

    CAS  Google Scholar 

  • Schwarz JR, Walker JD, Colwell RR (1975) Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol 21(5):682–687

    Article  CAS  Google Scholar 

  • Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016a) Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526

    Article  CAS  Google Scholar 

  • Scoma A, Barbato M, Borin S, Daffonchio D, Boon N (2016b) An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. Sci Rep 6:31316. https://doi.org/10.1038/srep31316

    Article  CAS  Google Scholar 

  • Shin B (2018) Hydrocarbon degradation under contrasting redox conditions in shallow coastal sediments of the northern Gulf of Mexico, Ph.D. Dissertation, Georgia Institute of Technology, pp 160

    Google Scholar 

  • Shin B, Kim M, Zengler K, Chin KJ, Overholt WA, Gieg LM, Konstantinidis KT, Kostka JE (2019) Anaerobic degradation of hexadecane and phenanthrene coupled to sulfate reduction by enriched consortia from northern Gulf of Mexico seafloor sediment. Sci Rep 9(1):1239

    Google Scholar 

  • Sibert R, Harrison S, Joye SB (2017) Protocols for radiotracer estimation of primary hydrocarbon oxidation in oxygenated seawater. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: field studies. Springer, Berlin, Heidelberg, pp 263–276

    Google Scholar 

  • Simonato F, Campanaro S, Lauro FM, Vezzi A, D’Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126(1):11–25

    Article  CAS  Google Scholar 

  • Soni BK, Conrad J, Kelley R, Srivastava V (1998) Effect of temperature and pressure on growth and methane utilization by several methanotrophic cultures. Appl Biochem Biotechnol 70–72(1):729–738

    Article  Google Scholar 

  • Tapilatu Y, Acquaviva M, Guigue C, Miralles G, Bertrand JC, Cuny P (2010a) Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett Appl Microbiol 50(2):234–236

    Article  CAS  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010b) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14(2):225–231. https://doi.org/10.1007/s00792-010-0301-z

    Article  CAS  Google Scholar 

  • Timmers PHA, Gieteling J, Widjaja-Greefkes HCA, Plugge CM, Stams AJM, Lens PNL, Meulepas RJW (2015) Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor. Appl Environ Microbiol 81(4):1286–1296

    Article  Google Scholar 

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Kinnaman FS, Yvon-Lewis S, Du M, Chan EW, Garcia Tigreros F, Villanueva CJ (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330(6001):208–211. https://doi.org/10.1126/science.1196830

    Article  CAS  Google Scholar 

  • Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291

    Article  CAS  Google Scholar 

  • Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci 111(45):15906–15911. https://doi.org/10.1073/pnas.1414873111

    Article  CAS  Google Scholar 

  • Valladares Juárez AG, Kadimesetty HS, Achatz DE, Schedler M, Muller R (2015) Online monitoring of crude oil biodegradation at elevated pressures. IEEE J Sel Top Appl Earth Obs Remote Sens 8(2):872–878. https://doi.org/10.1109/JSTARS.2014.2347896

    Article  Google Scholar 

  • Xie Z, Jian H, Jin Z, Xiao X (2018) Enhancing the adaptability of the deep-sea bacterium Shewanella piezotolerans WP3 to high pressure and low temperature by experimental evolution under H2O2 stress. Appl Environ Microbiol 84(5):e02342–e02317

    Google Scholar 

  • Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A (2016) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II Top Stud Oceanogr 129:282–291. https://doi.org/10.1016/j.dsr2.2014.01.014

    Article  CAS  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 meters in the Deep Sea. Annu Rev Microbiol 49(1):777–805

    Article  CAS  Google Scholar 

  • Zhang Y, Henrie JP, Bursens J, Boon N (2010) Stimulation of in vitro anaerobic oxidation of methane rate in a continuous high-pressure bioreactor. Bioresour Technol 101(9):3132–3138. https://doi.org/10.1016/j.biortech.2009.11.103

    Article  CAS  Google Scholar 

  • ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57(2):179

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel E. Kostka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostka, J.E. et al. (2020). Biodegradation of Petroleum Hydrocarbons in the Deep Sea. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_7

Download citation

Publish with us

Policies and ethics