Skip to main content

Jet Formation at the Spill Site and Resulting Droplet Size Distributions

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

The size distribution of oil droplets and gas bubbles forming at the exit geometry of a deep-sea blowout is one of the key parameters to understand its propagation and fate in the ocean, whether with regard to rising time to the surface, drift by ocean currents, dissolution or biodegradation. While a large 8 mm droplet might rise to the sea surface within minutes or hours, microdroplets <100 μm may take weeks or months to surface, if at all. On the other hand, a microdroplet or bubble dissolutes faster due to its larger surface to volume ratio and is also more available for biodegrading bacteria. To be able to properly model these effects, it is necessary to understand the drop formation processes near the discharge point and to predict the evolving droplet size distribution (DSD) for the specific conditions.

In this chapter, the general breakup mechanisms and flow regimes of an oil-in-water jet are discussed in Sect. 4.1. Section 4.2 focuses on the different approaches to determine the DSD in the laboratory and field settings and critically reviews the existing datasets. State-of-the-art models for the prediction of the DSD of a subsea oil discharge are presented alongside a new approach based on the turbulent kinetic energy (TKE) in Sect. 4.3, while Sect. 4.4 takes a closer look at the specific effects of the deep sea on the DSD. Based on this, Sect. 4.5 discusses the advantages and limitations of subsea dispersant injection. Section 4.6 provides a summary of the chapter and gives an outlook to unresolved questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Empirical coefficient in the modified Weber number scaling

B :

Empirical coefficient in the modified Weber number scaling

CDF:

Cumulative distribution function

D :

Nozzle/discharge diameter

d 32 :

Sauter diameter

d n50 :

Median diameter of number distribution

d p :

Drop/particle diameter

d v50 :

Median diameter of volume distribution

DOR:

Dispersant-to-oil ratio

DSD:

Drop size distribution

erf(x):

Gauss error function

exp(x):

Exponential function

IFT:

Interfacial tension

k i :

Scaling factor

M :

Oil mass inside the nozzle

Oh:

Ohnesorge number

p :

Pressure

Δp:

Pressure drop at the nozzle

Q :

Volume flow rate

Re :

Reynolds number

u l :

Exit velocity of dispersed liquid phase

Vi:

Viscosity number

We:

Weber number

We*:

Modified Weber number

α :

Spreading factor of the Rosin-Rammler distribution function

ε :

Turbulent energy dissipation rate

ε u :

Turbulent energy dissipation rate caused by the exit velocity

ε pd :

Turbulent energy dissipation rate caused by pressure drop at the nozzle

η l :

Dynamic viscosity of dispersed liquid phase

ρ l :

Density of dispersed liquid phase

ρ c :

Density of continuous phase

σ :

Spreading factor of the log-normal distribution function

σ l :

Interfacial tension (IFT) between dispersed liquid phase and continuous phase

References

  • Adams EE, Socolofsky SA (2004) Review of deep oil spill modeling activity supported by the DeepSpill JIP and offshore operators committee: Final Report. 26 pp

    Google Scholar 

  • Ahmed TH (2010) Reservoir engineering handbook, 4th edn. Gulf Professional, Oxford

    Google Scholar 

  • Aman ZM, Paris CB, May EF, Johns ML, Lindo-Atichati D (2015) High-pressure visual experimental studies of oil-in-water dispersion droplet size. Chem Eng Sci 127:392–400. https://doi.org/10.1016/j.ces.2015.01.058

    Article  CAS  Google Scholar 

  • Belore R (2014) Subsea chemical dispersant research. In: Proceedings of the 37th AMOP technical seminar on environmental contamination and response, Canmore, Alberta

    Google Scholar 

  • Booth CP, Leggoe JW, Aman ZM (2018) The use of computational fluid dynamics to predict the turbulent dissipation rate and droplet size in a stirred autoclave. Chem Eng Sci. In Press

    Google Scholar 

  • Boufadel MC, Gao F, Zhao L, Özgökmen T, Miller R, King T, Robinson B, Lee K, Leifer I (2018) Was the Deepwater Horizon well discharge churn flow?: implications on the estimation of the oil discharge and droplet size distribution. Geophys Res Lett 45:2396–2403. https://doi.org/10.1002/2017GL076606

    Article  Google Scholar 

  • Boxall JA, Koh CA, Sloan ED, Sum AK, Wu DT (2012) Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir 28:104–110. https://doi.org/10.1021/la202293t

    Article  CAS  Google Scholar 

  • Brandvik PJ, Johansen Ø, Leirvik F, Farooq U, Daling PS (2013) Droplet breakup in subsurface oil releases – part 1: Experimental study of droplet breakup and effectiveness of dispersant injection. Mar Pollut Bull 73:319–326. https://doi.org/10.1016/j.marpolbul.2013.05.020

    Article  CAS  Google Scholar 

  • Brandvik PJ, Davies EJ, Storey C, Leirvik F, Krause DF (2017) Subsurface oil releases – verification of dispersant effectiveness under high pressure using combined releases of live oil and natural gas, SINTEF report no: A27469. Trondheim Norway 2016. ISBN: 978-821405857-4

    Google Scholar 

  • Davies EJ, Brandvik PJ, Leirvik F, Nepstad R (2017) The use of wide-band transmittance imaging to size and classify suspended particulate matter in seawater. Mar Pollut Bull 115:105–114. https://doi.org/10.1016/j.marpolbul.2016.11.063

    Article  CAS  Google Scholar 

  • Gros J, Reddy CM, Nelson RK, Socolofsky SA, Arey JS (2016) Simulating gas–liquid−water partitioning and fluid properties of petroleum under pressure: implications for deep-sea blowouts. Environ Sci Technol 50:7397–7408. https://doi.org/10.1021/acs.est.5b04617

    Article  CAS  Google Scholar 

  • Hsiang L-P, Faeth GM (1992) Near-limit drop deformation and secondary breakup. Int J Multiphase Flow 18:635–652

    Article  CAS  Google Scholar 

  • Jaggi A, Snowdon RW, Stopford A, Radović JR, Oldenburg TB, Larter SR (2017) Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Org Geochem 108:1–8. https://doi.org/10.1016/j.orggeochem.2017.03.006

    Article  CAS  Google Scholar 

  • Johansen Ø, Rye H, Melbye AG, Jensen HV, Serigstad B, Knutsen T (2000) Deep spill JIP - experimental discharges of gas and oil at Helland Hansen – June 2000, Technical Report

    Google Scholar 

  • Johansen Ø, Brandvik PJ, Farooq U (2013) Droplet breakup in subsea oil releases--part 2: Predictions of droplet size distributions with and without injection of chemical dispersants. Mar Pollut Bull 73:327–335. https://doi.org/10.1016/j.marpolbul.2013.04.012

    Article  CAS  Google Scholar 

  • Kundu PK, Cohen IM, Dowling DR (2016) Fluid mechanics, Sixth edition. Academic Press, Oxford

    Google Scholar 

  • Lake LW, Fanchi JR (2006) Petroleum engineering handbook. Society of Petroleum Engineers, Richardson

    Google Scholar 

  • Lefebvre AH, McDonell VG (2017) Atomization and sprays, Second edition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lehr W, Socolofsky SA (2020) The importance of understanding fundamental physics and chemistry of deep oil blowouts (Chap. 2). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Lehr B, Aliseda A, Bommer P, Espina P, Flores O, Lasheras JC, Leifer I, Possolo A, Riley J, Savas O, Shaffer F, Wereley S, Yapa PD (2010) Deepwater Horizon Release: estimate of rate by PIV, July 21, 2010, Accessed on October 29, 2018. https://www.doi.gov/sites/doi.gov/files/migrated/deepwaterhorizon/upload/Deepwater_Horizon_Plume_Team_Final_Report_7-21-2010_comp-corrected2.pdf

  • Li Z, Bird A, Payne JR, Vinhateiro N, Kim Y, Davis C, Loomis N (2015) Technical reports for Deepwater Horizon water column injury assessment: oil particle data from the Deepwater Horizon oil spill. https://www.fws.gov/doiddata/dwh-ar-documents/946/DWH-AR0024715.pdf. Accessed 28 Sept 2018

  • Li Z, Spaulding M, French McCay D, Crowley D, Payne JR (2017) Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects. Mar Pollut Bull 114:247–257. https://doi.org/10.1016/j.marpolbul.2016.09.008

    Article  CAS  Google Scholar 

  • Maaß S, Wollny S, Voigt A, Kraume M (2011) Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions. Exp Fluids 50:259–269. https://doi.org/10.1007/s00348-010-0918-9

    Article  Google Scholar 

  • Malone K, Pesch S, Schlüter M, Krause D (2018) Oil droplet size distributions in deep-sea blowouts: influence of pressure and dissolved gases. Environ Sci Technol 52:6326–6333. https://doi.org/10.1021/acs.est.8b00587

    Article  CAS  Google Scholar 

  • Masutani S, Adams EE (2001) Experimental study of multiphase plumes with application to deep ocean oil spills: final report to U.S. Dept. of the Interior

    Google Scholar 

  • Ohnesorge WV (1936) Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Z Angew Math Mech 16:355–358. https://doi.org/10.1002/zamm.19360160611

    Article  Google Scholar 

  • Oldenburg TBP, Jaeger P, Gros J, Socolofsky SA, Pesch S, Radović J, Jaggi A (2020) Physical and chemical properties of oil and gas under reservoir and deep-sea conditions (Chap. 3). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Perlin N, Paris CB, Berenshtein I, Vaz AC, Faillettaz R, Aman ZM, Schwing PT, Romero IC, Schlüter M, Liese A, Noirungsee N, Hackbusch S (2020) Far-field modeling of a deep-sea blowout: sensitivity studies of initial conditions, bio-degradation, sedimentation and sub-surface dispersant injection on surface slicks and oil plume concentrations (Chap. 11). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Pesch S, Schlüter M, Aman ZM, Malone K, Krause D, Paris CB (2020) Behavior of rising droplets and bubbles – impact on the physics of deep-sea blowouts and oil fate (Chap. 5). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, van Mooy BAS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20229–20,234. https://doi.org/10.1073/pnas.1101242108

    Article  Google Scholar 

  • Satter A, Iqbal GM (2016) Reservoir engineering: the fundamentals, simulation, and management of conventional and unconventional recoveries. Elsevier/Gulf Professional Publishing, Amsterdam

    Google Scholar 

  • Seemann R, Malone K, Laqua K, Schmidt J, Meyer A, Krause D, Schlüter M (2014) A new high-pressure laboratory setup for the investigation of deep-sea oil spill scenarios under in-situ conditions. In: Proceedings of the seventh International Symposium on Environmental Hydraulics, pp 340–343

    Google Scholar 

  • Socolofsky SA, Adams EE, Boufadel MC, Aman ZM, Johansen Ø, Konkel WJ, Lindo D, Madsen MN, North EW, Paris CB, Rasmussen D, Reed M, Rønningen P, Sim LH, Uhrenholdt T, Anderson KG, Cooper C, Nedwed TJ (2015) Intercomparison of oil spill prediction models for accidental blowout scenarios with and without subsea chemical dispersant injection. Mar Pollut Bull 96:110–126. https://doi.org/10.1016/j.marpolbul.2015.05.039

    Article  CAS  Google Scholar 

  • Tang L (2004) Cylindrical liquid-liquid jet instability. Ph. D. Thesis

    Google Scholar 

  • Vaz AC, Paris CB, Dissanayake AL, Socolofsky SA, Gros J, Boufadel MC (2020) Dynamic coupling of near-field and far-field models (Chap. 9). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills: facts, fate, effects. Springer, Cham

    Google Scholar 

  • Wang CY, Calabrese RV (1986) Drop breakup in turbulent stirred-tank contactors. Part II: relative influence of viscosity and interfacial tension. Am Inst Chem Eng J 32:667–676. https://doi.org/10.1002/aic.690320417

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, Socolofsky SA, Adams E, King T, Lee K (2014) Evolution of droplets in subsea oil and gas blowouts: development and validation of the numerical model VDROP-J. Mar Pollut Bull 83:58–69. https://doi.org/10.1016/j.marpolbul.2014.04.020

    Article  CAS  Google Scholar 

  • Zhao L, Shaffer F, Robinson B, King T, D’Ambrose C, Pan Z, Gao F, Miller RS, Conmy RN, Boufadel MC (2016) Underwater oil jet: hydrodynamics and droplet size distribution. Chem Eng J 299:292–303. https://doi.org/10.1016/j.cej.2016.04.061

    Article  CAS  Google Scholar 

  • Zuzio D, Estivalezes J-L, Villedieu P, Blanchard G (2013) Numerical simulation of primary and secondary atomization. Comptes Rendus Mécanique 341:15–25. https://doi.org/10.1016/j.crme.2012.10.003

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by a from the Gulf of Mexico Research Initiative/C-IMAGE. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org/ (DOIs: 10.7266/n7-jjqd-pa77, 10.7266/n7-eha7-tv03, 10.7266/N7V69H19, 10.7266/N77D2SM2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Malone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malone, K., Aman, Z.M., Pesch, S., Schlüter, M., Krause, D. (2020). Jet Formation at the Spill Site and Resulting Droplet Size Distributions. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_4

Download citation

Publish with us

Policies and ethics