Skip to main content

Physical and Chemical Properties of Oil and Gas Under Reservoir and Deep-Sea Conditions

  • Chapter
  • First Online:
Book cover Deep Oil Spills

Abstract

Petroleum is one of the most complex naturally occurring organic mixtures. The physical and chemical properties of petroleum in a reservoir depend on its molecular composition and the reservoir conditions (temperature, pressure). The composition of petroleum varies greatly, ranging from the simplest gas (methane), condensates, conventional crude oil to heavy oil and oil sands bitumen with complex molecules having molecular weights in excess of 1000 daltons (Da). The distribution of petroleum constituents in a reservoir largely depends on source facies (original organic material buried), age (evolution of organisms), depositional environment (dysoxic versus anoxic), maturity of the source rock (kerogen) at time of expulsion, primary/secondary migration, and in-reservoir alteration such as biodegradation, gas washing, water washing, segregation, and/or mixing from different oil charges. These geochemical aspects define the physical characteristics of a petroleum in the reservoir, including its density and viscosity. When the petroleum is released from the reservoir through an oil exploration accident like in the case of the Deepwater Horizon event, several processes are affecting the physical and chemical properties of the petroleum from the well head into the deep sea. A better understanding of these properties is crucial for the development of near-field oil spill models, oil droplet and gas bubble calculations, and partitioning behavior of oil components in the water. Section 3.1 introduces general aspects of the origin of petroleum, the impact of geochemical processes on the composition of a petroleum, and some molecular compositional and physicochemical background information of the Macondo well oil. Section 3.2 gives an overview over experimental determination of all relevant physicochemical properties of petroleum, especially of petroleum under reservoir conditions. Based on the phase equilibrium modeling using equations of state (EOS), a number of these properties can be predicted which is presented in Sect. 3.3 along with a comparison to experimental data obtained with methods described in Sect. 3.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahim MA, Rao DN (2014) Measurement of interfacial tension in hydrocarbon/water/dispersant systems at deepwater conditions. Oil Spill Remediat. Wiley Online Books. https://doi.org/10.1002/9781118825662.ch14

    Chapter  Google Scholar 

  • Aeppli C, Reddy CM, Nelson RK, Kellermann MY, Valentine DL (2013) Recurrent oil sheens at the Deepwater Horizon disaster site fingerprinted with synthetic hydrocarbon drilling fluids. Environ Sci Technol 47:8211–8219. https://doi.org/10.1021/es4024139

    Article  CAS  Google Scholar 

  • Ahmed T (2010) Reservoir Engineering Handbook, 4th edn. Elsevier, Burlington

    Google Scholar 

  • Aucejo A, Burguet MC, Munoz R, Marques JL (1995) Densities, viscosities, and refractive indices of some n-alkane binary liquid systems at 298.15K. J Chem Eng Data 40:141–147

    Article  CAS  Google Scholar 

  • Bartha A, De Nicolais N, Sharma V, Roy SK, Srivastava R, Pomerantz AE, Sanclemente M, Perez W, Nelson RK, Reddy CM, Gros J, Arey JS, Lelijveld J, Dubey S, Tortella D, Hantschel T, Peters KE, Mullins OC (2015) Combined petroleum system modeling and comprehensive two-dimensional gas chromatography to improve understanding of the crude oil chemistry in the llanos basin, Colombia. Energy Fuel 29:4755–4767. https://doi.org/10.1021/acs.energyfuels.5b00529

    Article  CAS  Google Scholar 

  • Bauget F, Lenormand R (2002) Mechanisms of bubble formation by pressure decline in porous media SPE 77457

    Google Scholar 

  • Bashford FB, Adams JC (1883) An attempt to test the theories on capillary action. University Press, Cambridge

    Google Scholar 

  • Blander M, Katz JL (1975) Bubble nucleation in liquids. AICHE J 21(5):833–848

    Article  CAS  Google Scholar 

  • Bennett B, Adams JJ, Gray ND, Sherry A, Oldenburg TBP, Huang H, Larter SR, Head IM (2013) The controls on the composition of biodegraded oils in the deep subsurface – part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. J Org Geochem 56:94–105

    Article  CAS  Google Scholar 

  • Chevalier JLE, Petrino PJ, Gaston-Bonhomme YH (1990) Viscosity and density of some aliphatic, cyclic, and aromatic hydrocarbons binary liquid mixtures. J Chem Eng Data 35:206–212

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, New York, pp 44–89

    Google Scholar 

  • Daling PS, Leirvik F, Almas IK, Brandvik PJ, Hansen AL, Reed M (2014) Surface weathering and dispersibility of Macondo crude oil. Mar Pollut Bull 87:300–310. https://doi.org/10.1016/j.marpolbul.2014.07.005

    Article  CAS  Google Scholar 

  • Danesh A (1998) PVT and phase behaviour of petroleum reservoir fluids. Elsevier. ed, Developments in Petroleum Science, Amsterdam

    Google Scholar 

  • Eggers R (ed) (2012) High pressure applications in enhanced crude oil recovery, high pressure processes. Wiley. Chapter 3.2

    Google Scholar 

  • Firoozabadi A, Ramey HJ (1988) Surface tension of water-hydrocarbon systems at reservoir conditions. J Can Pet Technol 27:41–48. https://doi.org/10.2118/88-03-03

    Article  CAS  Google Scholar 

  • Gros J, Nabi D, Würz B, Wick LY, Brussaard CPD, Huisman J, van der Meer JR, Reddy CM, Arey JS (2014) First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water. Environ Sci Technol 48:9400–9411. https://doi.org/10.1021/es502437e

    Article  CAS  Google Scholar 

  • Gros J, Reddy CM, Nelson RK, Socolofsky SA, Arey JS (2016) Simulating gas−liquid−water partitioning and fluid properties of petroleum under pressure: implications for deep-sea blowouts. Environ Sci Technol 50:7397–7408. https://doi.org/10.1021/acs.est.5b04617

    Article  CAS  Google Scholar 

  • Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Arey JS (2017) Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc Natl Acad Sci U S A 114:201612518. https://doi.org/10.1073/pnas.1612518114

    Article  Google Scholar 

  • Hayduk W, Laudie H (1974) Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AICHE J 20:611–615. https://doi.org/10.1002/aic.690200329

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  Google Scholar 

  • Jaeger P, Alotaibi M, Nasr-El-Din H (2010) Influence of compressed carbon dioxide on the capillarity of the gas-crude oil-reservoir water system. J Eng Data 55:5246–5251

    Article  CAS  Google Scholar 

  • Jaggi A, Snowdon RW, Stopford A, Radovic JR, Oldenburg TBP, Larter SR (2017) Experimental simulation of crude oil-water partitioning behavior of BTEX compounds during a deep submarine oil spill. Org Geochem 108:1–8

    Article  CAS  Google Scholar 

  • Kalikmanov VI (2013) Nucleation theory. Lecture notes in physics. Springer, Dordrecht

    Book  Google Scholar 

  • Knauer S, Schenk M, Köddermann T, Reith D, Jaeger P (2017) Interfacial tension and related properties of ionic liquids in CH4 and CO2 at elevated pressures: experimental data and molecular dynamics simulation. JCED J Eng Data 62(8):2234–2243

    Article  CAS  Google Scholar 

  • Lehr W, Jones R, Evans M, Simecek-Beatty D, Overstreet R (2002) Revisions of the ADIOS oil spill model. Environ Model Softw 17:189–197. https://doi.org/10.1016/S1364-8152(01)00064-0

    Article  Google Scholar 

  • Lin H, Duan Y-Y (2005) Empirical correction to the Peng–Robinson equation of state for the saturated region. Fluid Phase Equilib 233:194–203. https://doi.org/10.1016/j.fluid.2005.05.008

    Article  CAS  Google Scholar 

  • McCain WD (1990) The properties of petroleum fluids. PennWell Books

    Google Scholar 

  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res Oceans 111:C09007. https://doi.org/10.1029/2005JC003183

    Article  Google Scholar 

  • McKenna AM, Nelson RK, Reddy CM, Savory JT, Kaiser NK, Fitzsimmons JE, Marshall AG, Rodgers RP (2013) Expansion of the analytical window for oil spill characterization by ultrahigh resolution mass spectrometry: beyond gas chromatography. Environ Sci Technol 47:7530–7539

    Article  CAS  Google Scholar 

  • Michelsen ML, Mollerup JM (2007) Thermodynamic models: fundamentals & computational aspects, 2nd edn. Tie-Line Publications, Holte

    Google Scholar 

  • Oldenburg TBP, Brown M, Bennett B, Larter SR (2014) The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Org Geochem 75:151–168. https://doi.org/10.1016/j.orggeochem.2014.07.002

    Article  CAS  Google Scholar 

  • Oldenburg TBP, Jones M, Huang H, Bennett B, Shafiee NS, Head I, Larter SR (2017) The controls on the composition of biodegraded oils in the deep subsurface- part 4. Degradation and production of high molecular weight aromatic and polar species during in-reservoir biodegradation. Org Geochem 114:57–80

    Article  CAS  Google Scholar 

  • Péneloux A, Rauzy E, Fréze R (1982) A consistent correction for Redlich-Kwong-soave volumes. Fluid Phase Equilib 8:7–23. https://doi.org/10.1016/0378-3812(82)80002-2

    Article  Google Scholar 

  • Pesch S, Jaeger P, Jaggi A, Malone K, Hoffmann M, Krause D, Oldenburg TBP, Schlüter M (2018) Rise velocity of live-oil droplets in deep-sea oil spills. Environ Eng Sci 35:289–299. https://doi.org/10.1089/ees.2017.0319

    Article  CAS  Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, volume 1. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Reddy CM, Arey JS, Seewald JS, Sylva SP, Lemkau KL, Nelson RK, Carmichael CA, McIntyre CP, Fenwick J, Ventura GT, Van Mooy BAS, Camilli R (2012) Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20229–20234

    Article  CAS  Google Scholar 

  • Riazi MR (2005) Characterization and properties of petroleum fractions. ASTM International, West Conshohocken

    Google Scholar 

  • Ryerson TB, Camilli R, Kessler JD, Kujawinski EB, Reddy CM, Valentine DL, Atlas E, Blake DR, de Gouw J, Meinardi S, Parrish DD, Peischl J, Seewald JS, Warneke C (2012) Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution. Proc Natl Acad Sci U S A 109:20246–20253. https://doi.org/10.1073/pnas.1110564109

    Article  CAS  Google Scholar 

  • Schou Pedersen K, Kristensen PL, Azeem Shaikh J (2006) Phase behavior of petroleum reservoir fluids. CRC Press, Boca Raton

    Book  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Sebastião P, Guedes Soares C (1995) Modeling the fate of oil spills at sea. Spill Sci Technol Bull 2:121–131. https://doi.org/10.1016/S1353-2561(96)00009-6

    Article  Google Scholar 

  • Sharqawy MH, Lienhard JH, Zubair SM (2010) Thermophysical properties of seawater: a review of existing correlations and data. Desalination Water Treat 16:354–380. https://doi.org/10.5004/dwt.2010.1079

    Article  CAS  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Heidelberg

    Book  Google Scholar 

  • Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, Farwell C, Hu L, Sinnaman FS, Yvon-Lewis S, Du M, Chan EW, Tigreros FG, Villanueva CJ (2010) Propane respiration jump-starts microbial response to a deep oil spill. Science 330:208–211

    Article  CAS  Google Scholar 

  • Venkataraman P, Tang J, Frenkel E, McPherson GL, He J, Raghavan SR, Kolesnichenko V, Bose A, John VT (2013) Attachment of a Hydrophobically modified biopolymer at the oil–water Interface in the treatment of oil spills. ACS Appl Mater Interfaces 5:3572–3580. https://doi.org/10.1021/am303000v

    Article  CAS  Google Scholar 

  • Wardlaw GD, Arey JS, Reddy CM, Nelson RK, Ventura GT, Valentine DL (2008) Disentangling oil weathering at a marine seep using GC×GC: broad metabolic specificity accompanies subsurface petroleum biodegradation. Environ Sci Technol 42:7166–7173. https://doi.org/10.1021/es8013908

    Article  CAS  Google Scholar 

  • Zick AA (2013) Equation-of-state fluid characterization and analysis of the Macondo reservoir fluids. (Expert report prepared on behalf of the United States No. TREX-011490R)

    Google Scholar 

Download references

Acknowledgment

This research was made possible by a from the Gulf of Mexico Research Initiative/C-IMAGE. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org/ (DOI: 10.7266/n7-xpgb-g817, DOI: 10.7266/N7DF6PQK, DOI: 10.7266/N7HX19QW, DOI: 10.7266/N7J38R2F) and at http://gulfresearchinitiative.org/hydrocarbon-intercalibration-experiment/

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas B. P. Oldenburg or Jonas Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oldenburg, T.B.P. et al. (2020). Physical and Chemical Properties of Oil and Gas Under Reservoir and Deep-Sea Conditions. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_3

Download citation

Publish with us

Policies and ethics