Skip to main content

Impact and Resilience of Benthic Foraminifera in the Aftermath of the Deepwater Horizon and Ixtoc 1 Oil Spills

  • Chapter
  • First Online:
Book cover Deep Oil Spills

Abstract

Benthic foraminifera, which are single-celled protists that primarily produce calcite shells, have been commonly used as bioindicators of anthropogenic and natural perturbations. Numerous surveys of benthic foraminifera conducted in the Gulf of Mexico (GoM) prior to any major oils spills allow for a fair assessment of impact, response, and resilience during and following the Deepwater Horizon (DHW) oil spill in the northern GoM (2010) and Ixtoc 1 oil spill in the southern (1979–1980). Initially, in the aftermath of DWH, there was an 80–93% decrease in benthic foraminifera density and a 30–40% decrease in species richness and heterogeneity in the northern GoM. From 2010 to 2012, there was a continuous depletion in benthic foraminifera calcite stable carbon isotopes related to increased deposition of petroleum carbon (PC). This depletion has subsequently been preserved in the sedimentary record. Following this period of impact, benthic foraminifera density and diversity reached a resilient state of equilibrium from 2013 to 2015, suggesting that the rate of resilience for the benthic habitat is on the order of 3 years following an event like the DWH. Secondly, the sedimentary records of benthic foraminifera were used to assess the impact, resilience, and subsequent preservation of the Ixtoc oil spill. A noticeable decrease in benthic foraminifera density as well as a depletion in the stable carbon isotopes of benthic foraminifera calcite occurred in the sedimentary interval corresponding to 1979–1980. These results have implications for determining the long-term preservation of oil spills, assessing PC mineralization and burial, and contributing to overall oil spill budgets. Overall, benthic foraminifera have proven to be valuable indicators of impact, response, and resilience of the benthos and can provide useful information concerning benthic habitat suitability following oil spills in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alve E, Korsun S, Schönfeld J, Dijkstra N, Golikova E, Hess S, Husum K, Panieri G (2016) Foram-AMBI: a sensitivity index based on benthic foraminiferal faunas from North-East Atlantic and Arctic fjords, continental shelves and slopes. Mar Micropaleontol 122:1–12. https://doi.org/10.1016/j.marmicro.2015.11.001

    Article  Google Scholar 

  • Bernhard JM, Sen Gupta BK, Baguley JG (2008) Benthic foraminifera living in Gulf of Mexico bathyal and abyssal sediments: community analysis and comparison to metazoan meiofaunal biomass and density. Deep-Sea Res II 55:2617–2626

    Article  Google Scholar 

  • Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart GJ, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sediment pulse in the NE Gulf of Mexico following the 2010 DWH blowout. PLoS One 10(7):e0132341. https://doi.org/10.1371/journal.pone.0132341

    Article  CAS  Google Scholar 

  • Brunner CA, Yeager KM, Hatch R, Simpson S, Keim J, Briggs KB, Louchouarn P (2013) Effects of oil from the 2010 Macondo well blowout on Marsh foraminifera of Mississippi and Louisiana, USA. Environ Sci Technol 47:9115–9123. https://doi.org/10.1021/es401943y

    Article  CAS  Google Scholar 

  • Buzas MA, Hayek LC, Culver SJ (2007) Community structure of benthic foraminifera in the Gulf of Mexico. Mar Micropaleontol 65:43–53

    Article  Google Scholar 

  • Culver SJ, Buzas MA (1983) Recent benthic foraminiferal provinces in the Gulf of Mexico. J Foraminifer Res 13:21–31

    Article  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 12:18–33. https://doi.org/10.1016/j.ancene.2016.01.006

    Article  Google Scholar 

  • Denne RA, Sen Gupta BK (1991) Association of bathyal foraminifera with water masses in the northwestern Gulf of Mexico. Mar Micropaleontol 17:173–193

    Article  Google Scholar 

  • Denoyelle M, Jorissen FJ, Martin D, Galgani F, Mine J (2010) Comparison of benthic foraminifera and macrofaunal indicators of the impact of oil-based drill mud disposal. Mar Pollut Bull 60(11):2007–2021. https://doi.org/10.1016/j.marpolbul.2010.07.024

    Article  CAS  Google Scholar 

  • Diego-Casimiro G (1989) Estudio preliminar de los foraminiferos bentonicos del area circundante a la IslaPerez, arrecife Alacran, Yucatan, Mexico. Secretaria de Marina. Direccion Investigaciones Oceanograficas, Boletin, pp 19–27

    Google Scholar 

  • Gracia A, Enciso Sánchez G, Alexander Valdés HM (2013) Composición y volúmen de contaminantes de las descargas costeras al Golfo de México. In: Botello AV, Rendón von Osten J, Benítez J, Gold-Boucht G (eds) Golfo de México. Contaminación e impacto ambiental: diagnóstico y tendencias. uac, unam-icmyl, cinvestav-Unidad Mérida

    Google Scholar 

  • Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2016) Changes in sediment redox conditions following the BP DWH Blowout event. Deep-Sea Res II Top Stud Oceanogr 129:167–178. https://doi.org/10.1016/j.dsr2.2014.12.009

    Article  CAS  Google Scholar 

  • Hill TM, Kennett JP, Valentine DL (2004) Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta 68(22):4619–4627. https://doi.org/10.1016/j.gca.2004.07.012

    Article  CAS  Google Scholar 

  • Jernelöv A, Lindén O (1981) Ixtoc I: a case study of the world’s largest oil spill. Ambio 10:299–306

    Google Scholar 

  • Jorissen F, Nardelli MP, Almogi-Labin A, Barras C, Bergamin L, Bicchi E, El Kateb A, Ferraro L, McGann M, Morigi C, Romano E, Sabbatini A, Schweizer M, Spezzaferri S (2018) Developing Foram-AMBI for biomonitoring in the Mediterranean: species assignments to ecological categories. Mar Micropaleontol 140:33–45. https://doi.org/10.1016/j.marmicro.2017.12.006

    Article  Google Scholar 

  • Lei YL, Li TG, Bi H, Cui WL, Song WP, Li JY, Li CC (2015) Responses of benthic foraminifera to the 2011 oil spill in the Bohai Sea, PR China. Mar Pollut Bull 96(1–2):245–260. https://doi.org/10.1016/j.marpolbul.2015.05.020

    Article  CAS  Google Scholar 

  • Lobegeier MK, Sen Gupta BK (2008) Foraminifera of hydrocarbon seep, Gulf of Mexico. J Foraminifer Res 38(2):93–116

    Article  Google Scholar 

  • Machain-Castillo ML, Gío-Argáez FR, Cuesta-Castillo LB, Alcala-Herera JA, Sen Gupta BK (2010) Last Glacial Maximum Deep water masses in southwestern Gulf of Mexico: clues from benthic foraminífera. No. Esp. “Paleoclimas del Cuaternario en ambientes tropicales y subtropicales”. Bol Soc Geol Mex 62(3):453–467. https://doi.org/10.18268/BSGM2010v62n3a9

    Article  Google Scholar 

  • Mata ML (1987) Benthic foraminiferal assemblages from Mexican continental shelves. M.S. Thesis, Louisiana State University, Baton Rouge, Louisiana

    Google Scholar 

  • Mata-Mendoza ML (1982) Foraminiferos Recientes de la Sonda de Campeche, Mexico. (DGO-DM- 20-78-04) Secretaria de Marina. Direccion de Investigaciones Oceanograficas 1:1–53

    Google Scholar 

  • Mojtahid M, Jorissen F, Durrieu J, Galgani F, Howa H, Redois F, Camps R (2006) Benthic foraminifera as bio-indicators of drill cutting disposal in tropical east Atlantic outer shelf environments. Mar Micropaleontol 61:58–75

    Article  Google Scholar 

  • Morvan J, Le Cadre V, Jorissen FJ, Debenay JP (2004) Foraminifera as potential bio-indicators of the “Erika” oil spill in the Bay of Bourgneuf: field and experimental studies. Aquat Living Resour 17:317–322

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Association (2011) Deepwater Horizon oil budget calculator (Technical Documentation). Retrieved from: http://www.noaanews.noaa.gov/stories2010/PDFs/Oil BudgetCalc_Full_HQ-Print_111110.pdf

  • Nigam R, Saraswat R, Panchang R (2006) Application of foraminifers in ecotoxicology: retrospect, perspect and prospect. Environ Int 32:273–283

    Article  CAS  Google Scholar 

  • Nomaki H, Heinz P, Nakatsuka T, Shimanaga M, Ohkouchi N, Ogawa NO, Kogure K, Ikemoto E, Kitazato H (2006) Different ingestion patterns of 13C-labelled bacteria and algae by deep-sea benthic foraminifera. Mar Ecol Prog Ser 310(95):1–8

    Google Scholar 

  • Osterman LE (2003) Benthic foraminifers from the continental shelf and slope of the Gulf of Mexico: an indicator of shelf hypoxia. Estuar Coast Shelf Sci 58:17–35

    Article  Google Scholar 

  • Panieri G (2006) The effect of shallow marine hydrothermal vent activity on benthic foraminifera (Aeolian arc, Tyrrhenian Sea). J Foraminifer Res 36:1. https://doi.org/10.2113/36.1.3

    Article  Google Scholar 

  • Panieri G, Sen Gupta BK (2008) Benthic foraminifera of the Blake Ridge hydrate mound, Western North Atlantic Ocean. Mar Micropaleontol 66:91–102. https://doi.org/10.1016/j.marmicro.2007.08.002

    Article  Google Scholar 

  • Panieri G, James RH, Camerlenghi A, Westbrook GK, COnsolaro C, Cacho I, Cesari V, Sanchez Cerveza C (2014) Record of methane emissions from the West Svalbard continental margin during the last 23,500 years revealed by δ13C of benthic foraminifera. Glob Planet Chang 122:151–160. https://doi.org/10.1016/j.gloplacha.2014.08.014

    Article  Google Scholar 

  • Paris C, Hénaff M (2012) Evolution of the Macondo well blowout: simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environ Sci Technol 46:13293–13302

    Article  CAS  Google Scholar 

  • Parker FL (1954) Distribution of foraminifera in the Northeastern Gulf of Mexico. Bull Mus Comp Zool 111:453–588

    Google Scholar 

  • Passow U (2014) Formation of rapidly-sinking oil-associated marine snow. Deep-Sea Res II Top Stud Oceanogr 129. https://doi.org/10.1016/j.dsr2.2014.10.001i

  • Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:035301

    Article  Google Scholar 

  • Phleger FB, Parker FL (1951) Gulf of Mexico foraminifera, Part 1 and 2. Geological Society of America Memoirs 46

    Google Scholar 

  • Poag WC (1984) Distribution and ecology of deep-water benthic foraminifera in the Gulf of Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 48:25–37

    Article  Google Scholar 

  • Poag WC (2015) Benthic foraminifera of the Gulf of Mexico: distribution, ecology, paleoecology. Texas A&M University Press, College Station

    Google Scholar 

  • Quigg A, Passow U, Hollander DJ, Daly KL, Burd A, Lee K (2020) Marine oil snow sedimentation and flocculent accumulation (MOSSFA) events: learning from the past to predict the future (Chap. 12). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Rathburn AE, Elena Pérez M, Martin JB, Day SA, Mahn C, Gieskes J, Ziebis W, Williams D, Bahls A (2003) Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochem Geophys Geosyst 4:12. https://doi.org/10.1029/2003GC000595

    Article  Google Scholar 

  • Romero IC, Schwing PT, Brooks GR, Larson RA, Hastings DW, Ellis G, Goddard EA, Hollander DJ (2015) Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico. PLoS One 10(5):e0128371. https://doi.org/10.1371/journal.pone.0128371

    Article  CAS  Google Scholar 

  • Romero IC, Toro-Farmer G, Diercks AR, Schwing PT, Muller-Karger F, Murawski S, Hollander DJ (2017) Large scale deposition of weathered oil in the Gulf of Mexico following a deepwater oil spill. Environ Pollut 228:179–189. https://doi.org/10.1016/j.envpol.2017.05.019

    Article  CAS  Google Scholar 

  • Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ (2015) A decline in deep-sea benthic foraminifera following the Deepwater Horizon event in the Northeastern Gulf of Mexico. PLoS One 10(3):e0120565. https://doi.org/10.1371/journal.pone.0120565

    Article  CAS  Google Scholar 

  • Schwing PT, Brooks GR, Larson RA, Holmes CW, O’Malley BJ, Hollander DJ (2017a) Constraining the spatial extent of the Marine Oil Snow Sedimentation and Accumulation (MOSSFA) following the DWH event using a 210Pbxs inventory approach. Environ Sci Technol 51:5962–5968. https://doi.org/10.1021/acs.est.7b00450

    Article  CAS  Google Scholar 

  • Schwing PT, O’Malley BJ, Romero IC, Martinez-Colon M, Hastings DW, Glabach MA, Hladky EM, Greco A, Hollander DJ (2017b) Characterizing the variability of benthic foraminifera in the Northeastern Gulf of Mexico following the Deepwater Horizon event (2010–2012). Environ Sci Pollut Res 24:2754. https://doi.org/10.1007/s11356-016-7996-z

    Article  CAS  Google Scholar 

  • Schwing PT, Chanton JP, Romero IC, Hollander DJ, Goddard EA, Brooks GR, Larson RA (2018a) Tracing the incorporation of petroleum carbon into benthic foraminiferal calcite following the Deepwater Horizon event. Environ Pollut 237:424–429. https://doi.org/10.1016/j.envpol.2018.02.066

    Article  CAS  Google Scholar 

  • Schwing PT, O’Malley BJ, Hollander DJ (2018b) Resilience of benthic foraminifera in the Northern Gulf of Mexico following the Deepwater Horizon event (2011–2015). Ecol Indic 84:753–764. https://doi.org/10.1016/j.ecolind.2017.09.044

    Article  Google Scholar 

  • Sen Gupta BK (ed) (1999) Modern foraminifera. Kluwer Academic Publishers, Great Britain

    Google Scholar 

  • Sen Gupta BK, Aharon P (1994) Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico: initial report on communities and stable isotopes. Geo-Mar Lett 14:88–96

    Article  CAS  Google Scholar 

  • Theodor M, Schmiedl G, Jorissen F, Mackensen A (2016) Stable carbon isotopes gradients in benthic foraminifera as proxy for organic fluxes in the Mediterranean Sea. Biogeosciences 13:6385–6404. https://doi.org/10.5194/bg-13-6385-2016

    Article  CAS  Google Scholar 

  • Thibodeaux LJ, Valsaraj KT, John VT, Papadopoulos KD, Pratt LR, Pesika NS (2011) Marine oil fate: knowledge gaps, basic research, and development needs; a perspective based on the Deepwater Horizon spill. Environ Eng Sci 28:87–93

    Article  CAS  Google Scholar 

  • Torres ME (2003) Is methane venting at the seafloor recorded by δ 13 C of benthic foraminifera shells? Paleoceanography 18(3):1–13. https://doi.org/10.1029/2002PA000824

    Article  Google Scholar 

  • U.S. District Court (2015) Findings of facts and conclusions of law – phase 2 trial. Case 2: 10-md-02179-cjb-ss, p 1e44. Document 14021 filed Jan. 15, 2015. http://www.laed.uscourts.gov/sites/default/files/OilSpill/Orders/1152015FindingsPhaseTwo.pdf

  • Vonk SM, Hollander DJ, Murk ATJ (2015) Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Mar Pollut Bull 100(1):5–12. https://doi.org/10.1016/j.marpolbul.2015.08.023

    Article  CAS  Google Scholar 

  • Zariess M, Mackensen A (2011) Testing the impact of seasonal phytodetritus deposition on d13C of epibenthic foraminifer Cibicidoides wuellerstorfi: A 31,000 year high-resolution record from the northwest African continental slope. Paleoceanography 26:2202. https://doi.org/10.1029/2010PA001944

    Article  Google Scholar 

  • Ziervogel K, Mckay L, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C, Teske A (2012) Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS One 7(4):e34816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible in part by a grant from the Gulf of Mexico Research Initiative, C-IMAGE, DEEP-C, and in part by the British Petroleum/Florida Institute of Oceanography (BP/FIO)-Gulf Oil Spill Prevention, Response, and Recovery Grants Program. The authors also thank Bryan O’Malley, Xinantecatl A. Nava-Fernández, Alejandro Rodriguez-Ramírez, Laura E. Gómez-Lizárraga, Laura Almaraz-Ruiz, and Marysol Escorza Reyes for their assistance with laboratory analyses. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at http://data.gulfresearchinitiative.org, https://doi.org/10.7266/N79021PB, https://doi.org/10.7266/N7CR5RDS, https://doi.org/10.7266/N70P0WZM, https://doi.org/10.7266/N7S180HN, https://doi.org/10.7266/n7-e90r-1v29, https://doi.org/10.7266/n7-repn-q515, https://doi.org/10.7266/n7-xh2e-et70.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Schwing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwing, P.T., Machain-Castillo, M.L. (2020). Impact and Resilience of Benthic Foraminifera in the Aftermath of the Deepwater Horizon and Ixtoc 1 Oil Spills. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_23

Download citation

Publish with us

Policies and ethics