Skip to main content

Changes in Redox Conditions of Surface Sediments Following the Deepwater Horizon and Ixtoc 1 Events

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

Following the blowout of the Macondo well, a sedimentation pulse resulted in significant changes in sedimentary redox conditions. This is demonstrated by downcore and temporal changes in the concentration of redox-sensitive metals: Mn and Re. Sediment cores collected in the NE Gulf of Mexico reveal increased sedimentation after the Deepwater Horizon (DWH) blowout. The formation of mucous-rich marine snow in surface waters and subsequent rapid deposition to sediments is the likely cause. Respiration of this material resulted in decreased pore-water oxygen and a shoaled redoxcline, resulting in two distinct Mn peaks in sediments following the event, one typically in the top 5–7 mm, with the other at 20–30 mm. Cores near the wellhead reveal this nonsteady-state behavior for 3–5 years after the event. A time series reveals that bulk sediment Re increased 3–4 times compared to the pre-impact baseline value for 2–3 years indicating sediments are increasingly more reducing. Three years after the blowout, subsurface Re reaches a plateau suggesting a return to steady-state conditions. In select sites where benthic foraminifera were counted, an assemblage-wide decrease is coincident with reducing conditions, demonstrating the important consequences of changing redox conditions on benthic ecosystems.

Another major submarine blowout in the southern Gulf of Mexico (Ixtoc 1; 1979–1980) released a large volume of crude oil below the surface. We observe multiple Mn oxide peaks associated with a shoaling redoxcline and Re maxima associated with more reducing conditions. Nonsteady-state behavior at sites near DWH and Ixtoc 1 is consistent with a MOSSFA (marine oil snow sedimentation and flocculent accumulation) event at both locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algeo TJ, Rowe H (2012) Paleoceanographic applications of trace-metal concentration data. Chem Geol 324-325:6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002

    Article  CAS  Google Scholar 

  • Aller RC (1980) Diagenetic processes near the sediment-water interface of Long Island sound. II. Fe and Mn. In: Barry S (ed) Advances in geophysics, vol 22. Elsevier, pp 351–415. https://doi.org/10.1016/S0065-2687(08)60068-0

    Chapter  Google Scholar 

  • Boyko T, Baturin G, Miller A (1986) Rhenium in recent ocean sediments. Geochem Int 23:38–47

    Google Scholar 

  • Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation Pulse in the NE Gulf of Mexico following the 2010 DWH Blowout. PLoS One 10(7):e0132341. https://doi.org/10.1371/journal.pone.0132341

    Article  CAS  Google Scholar 

  • Bruce P. Finney, Mitchell W. Lyle, G. Ross Heath, (1988) Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: Climatically induced redox variations and their effects on transition metal cycling.Paleoceanography 3 (2):169–189

    Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35(3):249–284. https://doi.org/10.1016/0012-8252(93)90040-E

    Article  CAS  Google Scholar 

  • Burdige DJ, Gieskes JM (1983) A pore water/solid phase diagenetic model for manganese in marine sediments. Am J Sci 283(1):29–47. https://doi.org/10.2475/ajs.283.1.29

    Article  CAS  Google Scholar 

  • Colley S, Thomson J, Wilson TRS, Higgs NC (1984) Post-depositional migration of elements during diagenesis in brown clays and turbidite sequences in the Northeast Atlantic. Geochim Cosmochim Acta 48:1223–1236

    Article  CAS  Google Scholar 

  • Colodner D, Sachs J, Ravizza G, Turekian K, Edmond J, Boyle E (1993) The geochemical cycle of rhenium: a reconnaissance. Earth Planet Sci Lett 117:205–221

    Article  CAS  Google Scholar 

  • Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78

    Article  CAS  Google Scholar 

  • Crusius J, Thomson J (2000) Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim Cosmochim Acta 64(13):2233–2242. https://doi.org/10.1016/S0016-7037(99)00433-0

    Article  CAS  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33. https://doi.org/10.1016/j.ancene.2016.01.006

    Article  Google Scholar 

  • Davis JE (2017) The Gulf: the making of an American Sea. Liveright Publishing, New York

    Google Scholar 

  • Emerson S, Jahnke R, Bender M, Froelich P, Klinkhammer G, Bowser C, Setlock G (1980) Early diagenesis in sediments from the eastern equatorial Pacific. I. Pore water nutrient and carbonate profiles. Earth Planet Sci Lett 49:57–80

    Article  CAS  Google Scholar 

  • Emerson SE, Fischer K, Reimers C, Heggie D (1985) Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res 32:1–22

    Article  CAS  Google Scholar 

  • EPA (1994) Microwave assisted acid digestion of sediments, sludges, soils, and oils, Method 3051. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Leudtke N, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B (1979) Early oxidation of organic matter in pelagic sediments of the eastern Equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Finney BP, Lyle MW, Heath GR (1988) Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling. Paleoceanography 3(2):169–189

    Article  Google Scholar 

  • Gobeil C, Macdonald RW, Sundby B (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim Cosmochim Acta 61(21):4647–4654. https://doi.org/10.1016/S0016-7037(97)00255-X

    Article  CAS  Google Scholar 

  • Gobeil C, Sundby B, Macdonald RW, Smith JN (2001) Recent change in organic carbon flux to Arctic Ocean deep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys Res Lett 28(9):1743–1746. https://doi.org/10.1029/2000GL012491

    Article  CAS  Google Scholar 

  • Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2016) Changes in sediment redox conditions following the BP DWH blowout event. Deep-Sea Res II Top Stud Oceanogr 129:167–178. https://doi.org/10.1016/j.dsr2.2014.12.009

    Article  CAS  Google Scholar 

  • Honjo S, Manganini SJ, Cole JJ (1982) Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res 29(5):609–625. https://doi.org/10.1016/0198-0149(82)90079-6

    Article  CAS  Google Scholar 

  • Joye SB, MacDonald IR, Leifer I, Asper V (2011) Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nat Geosci 4(3):160–164. http://www.nature.com/ngeo/journal/v4/n3/abs/ngeo1067.html#supplementary-information

    Article  CAS  Google Scholar 

  • Koide M, Hodge VF, Yang JS, Stallard M, Goldberg EG, Calhoun J, Bertine KK (1986) Some comparative marine chemistries of rhenium, gold, silver and molybdenum. Appl Geochem 1(6):705–714. https://doi.org/10.1016/0883-2927(86)90092-2

    Article  CAS  Google Scholar 

  • Kuzyk ZZA, Macdonald RW, Stern GA, Gobeil C (2011) Inferences about the modern organic carbon cycle from diagenesis of redox-sensitive elements in Hudson Bay. J Mar Syst 88(3):451–462. https://doi.org/10.1016/j.jmarsys.2010.11.001

    Article  Google Scholar 

  • Larson RA, Brooks GR, Schwing PT, Diercks AR, Holmes CW, Chanton JP, Diaz-Asencio M, Hollander DJ (2020) Characterization of the sedimentation associated with the Deepwater Horizon blowout: depositional pulse, initial response, and stabilization (Chap. 14). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, Cham

    Google Scholar 

  • Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW (2013) Abundant Porewater Mn(III) is a major component of the sedimentary redox system. Science 341(6148):875–878. https://doi.org/10.1126/science.1241396

    Article  CAS  Google Scholar 

  • Magen C, Mucci A, Sundby B (2011) Reduction rates of sedimentary Mn and Fe oxides: an incubation experiment with Arctic Ocean sediments. Aquat Geochem 17(4–5):629–643. https://doi.org/10.1007/s10498-010-9117-9

    Article  CAS  Google Scholar 

  • Mayor DJ, Thornton B, Hay S, Zuur AF, Nicol GW, McWilliam JM, Witte UF (2012) Resource quality affects carbon cycling in deep-sea sediments. ISME J 6(9):1740–1748. https://doi.org/10.1038/ismej.2012.14

    Article  CAS  Google Scholar 

  • Morford JL, Emerson SE (1999) The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta 63(11–12):1735–1750. https://doi.org/10.1016/S0016-7037(99)00126-X

    Article  CAS  Google Scholar 

  • Morford JL, Emerson SR, Breckel EJ, Kim SH (2005) Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim Cosmochim Acta 69(21):5021–5032

    Article  CAS  Google Scholar 

  • Passow U (2000) Formation of transparent exopolymer particles, TEP, from dissolved precursor material. Mar Ecol Prog Ser 192:1–11

    Article  CAS  Google Scholar 

  • Passow U (2014) Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Res II Top Stud Oceanogr 129:232. https://doi.org/10.1016/j.dsr2.2014.10.001

    Article  CAS  Google Scholar 

  • Passow U (2016) Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Res II Top Stud Oceanogr 129:232–240. https://doi.org/10.1016/j.dsr2.2014.10.001

    Article  CAS  Google Scholar 

  • Passow U, Ziervogel K, Asper V, Diercks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7(3):035301

    Article  Google Scholar 

  • Quigg A, Passow U, Hollander DJ, Daly KL, Burd A, Lee K (2020) Formation and sinking of MOSSFA (marine oil snow sedimentation and flocculent accumulation) events: past and present (Chap. 12). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Romero IC, Chanton JP, Rosenheim BE, Radović J, Schwing PT, Hollander DJ, Larter SR, Oldenburg TBP (2020) Long-term preservation of oil spill events in sediments: the case for the Deepwater Horizon Spill in the Northern Gulf of Mexico (Chap. 17). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189. https://doi.org/10.1016/j.envpol.2017.05.019

    Article  CAS  Google Scholar 

  • Schaller T, Morford J, Emerson SR, Feely RA (2000) Oxyanions in metalliferous sediments: tracers for paleoseawater metal concentrations? Geochim Cosmochim Acta 64(13):2243–2254. https://doi.org/10.1016/S0016-7037(99)00443-3

    Article  CAS  Google Scholar 

  • Schwing PT, Chanton JP, Romero IC, Hollander DJ, Goddard EA, Brooks GR, Larson RA (2018a) Tracing the incorporation of carbon into benthic foraminiferal calcite following the Deepwater Horizon event. Environ Pollut 237:424–429. https://doi.org/10.1016/j.envpol.2018.02.066

    Article  CAS  Google Scholar 

  • Schwing PT, O’Malley BJ, Hollander DJ (2018b) Resilience of benthic foraminifera in the Northern Gulf of Mexico following the Deepwater Horizon event (2011–2015). Ecol Indic 84:753–764. https://doi.org/10.1016/j.ecolind.2017.09.044

    Article  Google Scholar 

  • Schwing PT, Hollander DJ, Brooks GR, Larson RA, Hastings DW, Chanton JP, Lincoln SA, Radović JR, Langenhoff A (2020) The sedimentary record of MOSSFA events in the Gulf of Mexico: a comparison of the Deepwater Horizon (2010) and Ixtoc 1 (1979) oil spills (Chap. 13). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Schwing PT, Machain Castillo ML (2020) Impact and resilience of benthic foraminifera in the aftermath of the Deepwater Horizon and Ixtoc 1 oil spills (Chap. 23). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep oil spills – facts, fate and effects. Springer, Cham

    Google Scholar 

  • Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ (2015) A decline in benthic foraminifera following the Deepwater Horizon event in the Northeastern Gulf of Mexico. PLoS One 10(3):e0128505. https://doi.org/10.1371/journal.pone.0120565

    Article  CAS  Google Scholar 

  • Schwing PT, Romero IC, Larson RA, O'Malley BJ, Fridrik EE, Goddard EA, Brooks GR, Hastings DW, Rosenheim BE, Hollander DJ, Grant G, Mulhollan J (2016) Sediment core extrusion method at millimeter resolution using a calibrated, threaded-rod. J Vis Exp (114):54363. https://doi.org/10.3791/54363

  • Thomson J, Higgs NC, Croudace IW, Colley S, Hydes DJ (1993) Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim Cosmochim Acta 57:579–595

    Article  CAS  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1‚Äì2):12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012

    Article  CAS  Google Scholar 

  • U.S. District Court Findings of Facts and Conclusions of Law –Phase 2 Trial. Case 2: 10-md- 02179-cjb-ss, pp 1e44. Document 14021 Filed Jan. 15, 2015. http://www.laed.uscourts.gov/sites/default/files/OilSpill/Orders/1152015FindingsPhaseTwo.pdf

  • Verdugo P, Santschi PH (2010) Polymer dynamics of DOC networks and gel formation in seawater. Deep-Sea Res II Top Stud Oceanogr 57(16):1486–1493. https://doi.org/10.1016/j.dsr2.2010.03.002

    Article  CAS  Google Scholar 

  • Ziervogel K, McKay L, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C, Teske A (2012) Microbial activities and dissolved organic matter dynamics in oil-contaminated surface seawater from the Deepwater Horizon oil spill site. PLoS One 7(4):e34816. https://doi.org/10.1371/journal.pone.0034816

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to the numerous Eckerd College undergraduate students who helped in the laboratory and at sea including Brigid Carr, Shannon Hammaker, Chloe Holzinger, Farley Miller, Claire Miller, and Corday Selden. Grateful acknowledgments to Alan Shiller, who provided important insight at a critical time. We are grateful to the exceptional crew of the R/V Weatherbird II for their skilled help at sea collecting samples and staying safe during the field operations.

This research was made possible by funding from The Gulf of Mexico Research Initiative to the Center for the Integrated Modeling and Analysis of the Gulf Ecosystem (C-IMAGE) Consortium Deep and the Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico (Deep-C) Consortium. We also acknowledge partial funding for summer student support from Eckerd College NSSRP program. The complete data set, including all elements determined by ICP-MS, can be accessed at the GRIIDC website: https://data.gulfresearchinitiative.org/ (doi: 10.7266/N7DN43JM; 10.7266/N7C24TD; 10.7266/N7RX9914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Hastings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hastings, D.W. et al. (2020). Changes in Redox Conditions of Surface Sediments Following the Deepwater Horizon and Ixtoc 1 Events. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_16

Download citation

Publish with us

Policies and ethics