Skip to main content

Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) Events: Learning from the Past to Predict the Future

  • Chapter
  • First Online:
Deep Oil Spills

Abstract

Despite interest as early as in the 1880s, it was not until 1953 that Tokimi Tsujita (Seikai Fisheries Research Laboratory, Japan) was able to carefully collect and describe the matrix of microorganisms embedded in suspended organic matter (Tsujita, J Oceanogr Soc Jpn 8:1–14, 1953) that today we call marine snow. Subsequent studies reported that marine snow consisted of phytoplankton, small zooplankton, fecal material, and other particles (Nishizawa et al., Bull Fac Fish, Hokkaido Univ. 5:36–40, 1954). Across the ocean, Riley (Limnol Oceanogr 8:372–381, 1963) called this material “organic aggregates” which in addition to the organic material included nonliving material that was a “substrate for bacterial growth.” More than a decade later, Silver et al. (Science 201:371–373, 1978) quantified the abundance of marine snow, and its contribution to the total community in situ, and showed that marine snow particles were “metabolic hotspots,” with concentrations of microorganisms 3–4 orders of magnitude greater than those in the surrounding seawater. Alldredge and Cohen (Science 235:689–691, 1987) emphasized the importance of marine snow as unique chemical and physical microhabitats. The importance of transparent exopolymer particles (TEP), which form the matrix that embeds the individual component particles of marine snow, were described and quantified in the early 1990s (Alldredge et al., Deep-Sea Res I 40: 1131–1140, 1993; Passow and Alldredge, Mar Ecol Prog Ser 113:185–198, 1994; Passow et al., Deep-Sea Res Oceanogr Abstr 41:335–357, 1994).

The long-held belief that marine snow was both a specialized habitat and potential food source for those living in the deep ocean was also demonstrated at that time (Silver and Gowing, Prog Oceanogr 26:75–113, 1991). More recently it was confirmed that marine snow does indeed contribute significantly to the metabolism of the deep sea and provides hotspots of microbial diversity and activity at depth (e.g., Burd et al., Deep-Sea Res II 57:1557–1571, 2010; Bochdansky et al., Sci Rep 6:22633, 2016). Moreover, marine snow is now considered a transport vehicle for its biota and associated particulate matter (Volk and Hoffert, The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, D.C., pp. 99–110, 1985; Alldredge and Gotschalk, Limnol Oceanogr 33:339–351, 1988). Rapidly sinking marine snow is important in the marine carbon cycle as it is responsible for vertical (re)distribution and remineralization of carbon. The transport of carbon from the surface to the deep sea is known as the “biological carbon pump” (De La Rocha and Passow, Deep Sea Res II 54:639–658, 2007; De La Rocha and Passow, Treatise on Geochemistry. Vol. 8, Elsevier, Oxford, 2014). This pump, which leads to the uptake and sequestration of atmospheric CO2 (e.g., Volk and Hoffert, The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, D.C., pp. 99–110, 1985; Finkel et al., J Plankton Res 32:119–137, 2010; Zetsche and Ploug, Mar Chem 175:1–4, 2015), also plays an important role in the biogeochemical cycling of elements (e.g., Quigg et al., Nature 425:291–294, 2003; Quigg et al., Proc R Soc: Biol Sci 278:526–534, 2011). How climate change will change these processes is the subject of intense interest but beyond the scope of this chapter.

“I see always the steady, unremitting, downward drift of materials from above, flake upon flake, layer upon layer — a drift that has continued for hundreds of millions of years, that will go on as long as there are seas and continents. For the sediments are the materials of the most stupendous snowfall the earth has ever seen….” (from Rachel Carson, The Sea Around Us, 1951)

“Marine snow is a nearly ubiquitous phenomenon in oceanic waters. The individual particles of marine snow are often fragile, difficult to sample intact, and provide distinctive microenvironments that support unique biological, chemical, and physical processes.” (from Mary Silver 2015)

“Marine snow formation, incorporation of oil, and subsequent gravitational settling to the seafloor (i.e., MOSSFA: Marine Oil Snow Sedimentation and Flocculent Accumulation) was a significant pathway for the distribution and fate of oil, accounting for as much as 14% of the total oil released” as a result of the Deepwater Horizon oil spill in the Gulf of Mexico in 2010. (from Daly et al. 2016)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge AL (2005) The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. In: Gorsky G, Youngbluth MJ, Deibel D (eds) Response of marine ecosystems to global change: ecological impact of appendicularians. Éditions Scientifiques, Paris, 435 pp. ISBN:2-8470-302-9-8

    Google Scholar 

  • Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res I 40:1131–1140

    Article  CAS  Google Scholar 

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Article  Google Scholar 

  • Alldredge AL, Gotschalk C (1988) In situ settling behavior of marine snow. Limnol Oceanogr 33:339–351

    Article  Google Scholar 

  • Alldredge AL, Cohen Y (1987) Can microscale chemical patches persist in the sea?: microelectrode study of marine snow, fecal pellets. Science 235:689–691

    Article  CAS  Google Scholar 

  • Almeda R, Connelly T, Buskey EJ (2014a) Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea. Nat Sci Rep 4:7560. https://doi.org/10.1038/srep07560

    Article  CAS  Google Scholar 

  • Almeda R, Hyatt C, Buskey EJ (2014b) Toxicity of dispersant Corexit 9500A and crude oil to marine microzooplankton. Ecotoxicol Environ Saf 106:76–85

    Article  CAS  Google Scholar 

  • Almeda R, Baca S, Hyatt C, Buskey EJ (2014c) Ingestion and sublethal effects of physically and chemically dispersed crude oil on marine planktonic copepods. Ecotoxicology 23:988–1003

    Article  CAS  Google Scholar 

  • Arnosti C, Ziervogel K, Yang T, Teske A (2016) Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep-Sea Res II Top Stud Oceanogr 129:179–186

    Article  CAS  Google Scholar 

  • Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by colloidal particles. Adv Colloid Interf Sci 100–102:503–546

    Article  CAS  Google Scholar 

  • Baelum J, Borglin S, Chakraborty R, Fortney J, Lamendella R, Mason O, Auer M, Zemla BM, Conrad M, Malfatti S, Tringe S, Holman H, Hazen T, Jansson J (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416

    Article  CAS  Google Scholar 

  • Bandara UC, Yapa PD, Xie H (2011) Fate and transport of oil in sediment laden marine waters. J Hydro Environ Res 5:145–156

    Article  Google Scholar 

  • Baguley J, Montagna P, Cooksey C, Hyland JL, Bang HW, Morrison C, Kamikawa A, Bennetts P, Saiyo G, Parsons E, Herdener M, Ricci M (2015) Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140. https://doi.org/10.3354/meps11290

    Article  Google Scholar 

  • Bar-Zeev E, Passow U, Romero-Vargas Castrillón S, Elimelech M (2015) Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environ Sci Technol 49:691–707

    Article  CAS  Google Scholar 

  • Bianchi TS, Cook RL, Perdue EM, Kolic PE, Green N, Zhang Y, Smith RW, Kolker AS, Ameen A, King G, Ojwang LM, Schneider CL, Normand AE, Hetland R (2011) Impacts of diverted freshwater on dissolved organic matter and microbial communities in Barataria Bay, Louisiana, U. S. A. Mar Environ Res 72:248–257

    Article  CAS  Google Scholar 

  • Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373. https://doi.org/10.1038/ismej.2016.113

    Article  Google Scholar 

  • Bochdansky AB, Clouse MA, Herndl GJ (2016) Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum. Sci Rep 6:22633

    Article  CAS  Google Scholar 

  • Boehm PD, Fiest DL (1980) Aspects of the transport of petroleum hydrocarbons to the offshore benthos during the Ixtoc-I blowout in the Bay of Campeche. In: Proceedings of the Symposium on the Preliminary Results from the September, 1979 Pierce/Research IXTOC-1Cruises. Key Biscayne, Florida, June 9-10, 1980. Publications Office, NOAA/RD/MP3, Office of Marine Pollution Assessment, NOAA, US Dept. of Commerce, 325 Broadway, Boulder, CO 80303, USA

    Google Scholar 

  • Bragg JR, Owens EH (1995) Shoreline cleansing by interactions between oil and fine mineral particles. International Oil Spill Conference Proc: February–March 1995, 1995, pp 219–227

    Article  Google Scholar 

  • Bragg JR, Yang SH (1995) Clay-oil flocculation and its role in natural cleansing in Prince William sound following the Exxon Valdez oil spill. ASTM STP 1219:178–214

    Google Scholar 

  • Brakstad OG, Faksness L-G (2000) Biodegradation of water-accommodated fractions and dispersed oil in the seawater column. In: Proceedings of the International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Stavanger, 26–28

    Google Scholar 

  • Brooks GR, Larson RA, Schwing PT, Romero I, Moore C, Reichart G-J, Jilbert T, Chanton JP, Hastings DW, Overholt WA, Marks KP, Kostka JE, Holmes CW, Hollander D (2015) Sedimentation pulse in the NE Gulf of Mexico following the 2010 DWH Blowou. PLoS One 10:e0132341. https://doi.org/10.1371/journal.pone.0132341

    Article  CAS  Google Scholar 

  • Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J, Baltar F, Beaupré SR, Buesseler KO, DeHairs F, Jackson GA, Kadko DC, Koppelmann R, Lampitt RS, Nagata T, Reinthaler T, Robinson C, Robison BH, Tamburini C, Tanaka T (2010) Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: what the @$#! is wrong with present calculations of carbon budgets? Deep-Sea Res II 57:1557–1571

    Article  CAS  Google Scholar 

  • Burd AB, Jackson GA (2009) Particle aggregation. Annu Rev Mar Sci 1:65–90

    Article  Google Scholar 

  • Buskey EJ, White HK, Esbaugh AJ (2016) Impact of oil spills on marine life in the Gulf of Mexico: effects on plankton, nekton, and deep-sea benthos. Oceanography 29:174–181

    Article  Google Scholar 

  • Cai Z, Fu J, Liu W, Fu K, O'Reilly SE, Zhao D (2017) Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components. Mar Pollut Bull 114:408–418

    Article  CAS  Google Scholar 

  • Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV (2010) Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 330:201–204

    Article  CAS  Google Scholar 

  • Carson RL (1951) The sea around us. Chapter 6, “The long snowfall”. Oxford University Press, New York

    Google Scholar 

  • Chanton J, Zhao T, Rosenheim BE, Joye S, Bosman S, Brunner C, Yeager KM, Diercks AR, Hollander D (2015) Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the Deepwater Horizon oil spill. Environ Sci Technol 49:847–854

    Article  CAS  Google Scholar 

  • Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickle A, Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303. https://doi.org/10.1088/1748-9326/7/4/045303

    Article  CAS  Google Scholar 

  • Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391:568–572

    Article  CAS  Google Scholar 

  • Daling PS, Leirvik F, Almås IK, Brandvik PJ, Hansen BH, Lewis A, Reed M (2014) Surface weathering and dispersibility of MC252 crude oil. Mar Pollut Bull 87:300–310

    Article  CAS  Google Scholar 

  • Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation and sedimentation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33. https://doi.org/10.1016/j.ancene.2016.01.006

    Article  Google Scholar 

  • De La Rocha CL, Passow U (2014) The biological pump. In: Turekian KK, Holland HD (eds) Treatise on Geochemistry, vol 8. Elsevier, Oxford

    Google Scholar 

  • De La Rocha C, Passow U (2007) Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep Sea Res II 54:639–658

    Article  Google Scholar 

  • Diercks A-R, Dike C, Passow U, Ziervogel K, DiMarco SF, Asper VL (2018) Scales of seafloor sediment resuspension in the northern Gulf of Mexico. Elementa Sci Anthrop 6:32. https://doi.org/10.1525/elementa.285

    Article  Google Scholar 

  • Diercks AR, Highsmith RC, Asper VL, Joung D, Zhou Z, Guo L, Shiller AM, Joye SB, Teske AP, Guinasso N, Wade TL, Lohrenz SE (2010) Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys Res Lett 37:L20602. https://doi.org/10.1029/2010GL045046

    Article  CAS  Google Scholar 

  • Dilling L, Alldredge AL (2000) Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep-Sea Res I 47:1227–1245

    Article  CAS  Google Scholar 

  • Discart V, Bilad M, Vankelecom IF (2015) Critical evaluation of the determination methods for transparent exopolymer particles, agents of membrane fouling. Crit Rev Environ Sci Technol 45:167–192

    Article  Google Scholar 

  • Dissanayake AL, Burd AB, Daly KL, Francis S, Passow U (2018) Numerical modeling of the interaction of oil, marine snow, and riverine sediments in the ocean. J Geophys Res Oceans 123:5388. https://doi.org/10.1029/2018JC013790

    Article  CAS  Google Scholar 

  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1:16057

    Article  CAS  Google Scholar 

  • Doyle SM, Whitaker EA, De Pascuale V, Wade TL, Knap AH, Santschi PH, Quigg A, Sylvan JB (2018) Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and Corexit. Front Microbiol 9:689. https://doi.org/10.3389/fmicb.2018.00689

    Article  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  • Engel A (2000) The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. J Plankton Res 22:485–497

    Article  CAS  Google Scholar 

  • Févre JL (1979) On the hypothesis of a relationship between dinoflagellate blooms and the ‘Amoco Cadiz’ oil spill. J Mar Biol Assoc U K 59:525–528

    Article  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAK, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fitzpatrick FA, Boufadel MC, Johnson R, Lee KW, Graan TP, Bejarano AC, Zhu Z, Waterman D, Capone DM, Hayter E, Hamilton SK (2015) Oil-particle interactions and submergence from crude oil spills in marine and freshwater environments: review of the science and future research needs (No. 2015–1076). US Geological Survey

    Google Scholar 

  • Francis S, Burd AB, Daly KL, Passow U (2017) An aggregation model to estimate oil removal rate by sinking marine snow: a decision support tool. Gulf of Mexico oil spill and ecosystem science conference, New Orleans

    Google Scholar 

  • Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Gong Y, Zhao X, Cai Z, O’Reilly SE, Hao X, Zhao D (2014) A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull 79:16–33

    Article  CAS  Google Scholar 

  • Graham WM, Condon RH, Carmichael RH, D’Ambra I, Patterson HK, Linn LJ, Hernandez FJ Jr (2010) Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environ Res Lett 5:045301. https://doi.org/10.1088/1748-9326/5/4/045301

    Article  CAS  Google Scholar 

  • Grossart HP, Simon M (1993) Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in lake constance. Limnol Oceanogr 38:532–546

    Article  Google Scholar 

  • Gustitus SA, Clement TP (2017) Formation, fate, and impacts of microscopic and macroscopic oil-sediment residues in nearshore marine environments: a critical review. Rev Geophys 55(4):1130–1157. https://doi.org/10.1002/2017RG000572

    Article  Google Scholar 

  • Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013a) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091

    Article  CAS  Google Scholar 

  • Gutierrez T, Berry D, Yang T, Mishamandani S, McKay L, Teske A, Aitken M (2013b) Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill. PLoS One 8:e67717

    Article  CAS  Google Scholar 

  • Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL, Roeder T, Quinn KA, Bartlett T, Romero IC, Hollander DJ (2015) Changes in sedimentary redox conditions following the BP DwH blowout event. Deep-Sea Res II 129:167–178. https://doi.org/10.1016/j.dsr2.2014.12.009

    Article  CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad MS, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’Haeseleer P, Holman H-YN, Osman S, Lu Z, Van Nostrand JD, Deng Y, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  Google Scholar 

  • Hu C, Weisberg RH, Liu Y, Zheng L, Daly KL, English DC, Zhao J, Vargo GA (2011) Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill? Geophys Res Lett 38:L09601. https://doi.org/10.1029/2011GL047184

    Article  Google Scholar 

  • Jackson GA (1990) A model of the formation of marine algal flocs by physical coagulation processes. Deep-Sea Res 37:1197–1211

    Article  CAS  Google Scholar 

  • Jackson GA (1998) Using fractal scaling and two-dimensional particle size spectra to calculate coagulation rates for heterogeneous systems. J Colloid Interface Sci 202:20–29

    Article  CAS  Google Scholar 

  • Jernelöv A, Lindén O (1981) Ixtoc I: a case study of the world’s largest oil spill. Ambio 10:299–306

    Google Scholar 

  • Jézéquel R, Receveur J, Nedwed T, Le Floch S (2018) Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions. Mar Pollut Bull 127:626–636

    Article  CAS  Google Scholar 

  • Johansson S, Larsson U, Boehm P (1980) The Tsesis oil spill impact on the pelagic ecosystem. Mar Pollut Bull 11:284–293

    Article  CAS  Google Scholar 

  • Jokulsdottir T, Archer D (2016) A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity. Geosci Model Dev 9:1455–1476

    Article  CAS  Google Scholar 

  • Joye SB, Teske AP, Kostka JE (2014) Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. Bioscience 64:766–777

    Article  Google Scholar 

  • Khelifa A, Fingas M, Brown C (2008a) Effects of dispersants on Oil-SPM aggregation and fate in US coastal waters. Report submitted to the Coastal Response Research Center, University of New Hampshire, July 2008, Project Number: 06-090, 57pp

    Google Scholar 

  • Khelifa A, Fieldhouse B, Wang Z, Yang C, Landriault M, Brown CE, Fingas M (2008b) Effects of chemical dispersant on oil sedimentation due to oil-SPM flocculation: experiments with the NIST-1941b standard reference material. Proc IOSC 2008:627–631

    Google Scholar 

  • Kleindienst S, Paul JH, Joye SB (2015) Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol 13:388–396. https://doi.org/10.1038/nrmicro3452

    Article  CAS  Google Scholar 

  • Kranck K (1973) Flocculation of suspended sediment in the sea. Nature 246:348–350

    Article  Google Scholar 

  • Lambert RA, Variano EA (2016) Collision of oil droplets with marine aggregates: effect of droplet size. J Geophys Res Oceans 121:3250–3260. https://doi.org/10.1002/2015JC011562

    Article  CAS  Google Scholar 

  • Laurenceau-Cornec EC, Trull TW, Davies DM, De La Rocha CL, Blain S (2015) Phytoplankton morphology controls on marine snow sinking velocity. Mar Ecol Prog Ser 520:35–56

    Article  Google Scholar 

  • Lee K, Zheng Y, Merlin FX, Li Z, Niu H, King T, Doane R (2012a) Combining mineral fines with chemical dispersants to disperse oil in low temperature and low mixing environments, including the Arctic Rep. US Department of the Interior, Bureau of Safety and Environmental Enforcement (BSEE)

    Google Scholar 

  • Lee RF, Köster M, Paffenhöfer GA (2012b) Ingestion and defecation of dispersed oil droplets by pelagic tunicates. J Plankton Res 34:1058–1063

    Article  CAS  Google Scholar 

  • Lee K, Li Z, Robinson B, Kepkay PE, Blouin M, Doyon B (2011) Oil spill countermeasures in the Arctic. Proceedings of the International Conference on Oil Spill Risk Management: preparedness, Response and Contingency Planning in the Shipping and Offshore Industries. 7–9 March, Malmo Borshus, Sweden, Neil Bellefontaine and Olaf Linden (eds.), WMU Publications, pp 93–108

    Google Scholar 

  • Lee K, Li Z, King T, Kepkay P, Boufadel M, Venosa A, Mullin J (2008) Effects of chemical dispersants and mineral fines on partitioning of petroleum hydrocarbons in natural seawater. Proceedings of the 2008 International Oil Spill Conference, Savannah, Georgia, USA, May 4–8, 2008, pp 633–638. https://doi.org/10.7901/2169-3358-2008-1-633

    Article  Google Scholar 

  • Lee K, Stoffyn-Egli P, Tremblay GH, Owens EH, Sergy GA, Guénette CC, Prince RC (2003a) Oil-mineral aggregate formation on oiled beaches: natural attenuation and sediment relocation. Spill Sci Technol Bull 8:285–296

    Article  CAS  Google Scholar 

  • Lee K, Wohlgeschaffen G, Tremblay GH, Johnson BT, Sergy GA, Prince RC, Guénette CC, Owens EH (2003b) Toxicity evaluation with the Microtox test to assess the impact of in-situ oiled shoreline treatment options: natural attenuation and sediment relocation. Spill Sci Technol Bull 8:273–284

    Article  CAS  Google Scholar 

  • Lee K, Stoffyn-Egli P, Wood P, Lunel T (1998) Formation and structure of oil-mineral fine aggregates in coastal environments. Proceedings 21st Arctic and Marine Oilspill Program (AMOP) Technical Seminar. June 10–12, 1998, Edmonton, Alberta, pp 911–921

    Google Scholar 

  • Lee K, Lunel T, Wood P, Swannell R, Stoffyn-Egli P (1997) Shoreline cleanup by acceleration of clay-oil flocculation processes. In International oil spill conference (1997, No. 1, pp 235–240). American Petroleum Institute, Washington, DC

    Article  Google Scholar 

  • Lee K, Wong CS, Cretney WJ, Whitney FA, Parsons TR, Lalli C, Wu J (1985) Microbial response to crude oil and Corexit 9527: SEAFLUXES enclosure study. Microb Ecol 11:337–351

    Article  CAS  Google Scholar 

  • Lee RF, Gardner WS, Anderson JW, Blaylock JW, Barwell-Clarke J (1978) Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ Sci Technol 12:832–838

    Article  CAS  Google Scholar 

  • Lee RF, Anderson JW (1977) Fate and effect of naphthalenes: controlled ecosystem pollution experiment. Bull Mar Sci 27:127–134

    CAS  Google Scholar 

  • Le Floch S, Guyomarch J, Merlin FX, Stoffyn-Egli P, Dixon J, Lee K (2002) The influence of salinity on oil–mineral aggregate formation. Spill Sci Technol Bull 8:65–71

    Article  CAS  Google Scholar 

  • Levine S, Bowen BD, Partridge SJ (1989) Stabilization of emulsions by fine particles II. capillary and van der Waals forces between particles. Colloids Surf 38:345–364

    Article  CAS  Google Scholar 

  • Li Z, Lee K, King KT, Boufadel M, Venosa AD (2008) Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions. Mar Pollut Bull 56:903–912

    Article  CAS  Google Scholar 

  • Logan BE, Passow U, Alldredge AL, Grossart H-P, Simon M (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep-Sea Res II 42:203–214

    Article  Google Scholar 

  • Logan BE, Alldredge AL (1989) Potential for increased nutrient uptake by flocculating diatoms. Mar Biol 101:443–450

    Article  CAS  Google Scholar 

  • Loh A, Shim WJ, Ha SY, Yim UH (2014) Oil-suspended particulate matter aggregates: formation mechanism and fate in the marine environment. OSJ 49:329–341

    CAS  Google Scholar 

  • Lunel T, Lee K, Swannell R, Wood P, Rusin J, Bailey N, Halliwell C, Davies L, Sommerville M, Dobie A, Mitchell D, McDonagh M (1996) Shoreline clean up during the Sea Empress Incident: the role of surf washing (clay- M. oil flocculation), dispersants and bioremediation. Proceedings of the 19th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, June 12–14, 1996, Calgary, Alberta, Canada, pp 1521–1540

    Google Scholar 

  • Ma X, Cogswell A, Li Z, Lee K (2008) Particle size analysis of dispersed oil and oil-mineral aggregates with an automated epifluorescence microscopy system. Environ Technol 29:739–748

    Article  CAS  Google Scholar 

  • Mari XS, Passow U, Migon C, Burd AB, Legendre L (2017) Transparent exopolymer particles: effects on carbon cycling in the ocean. Prog Oceanogr 151:13–37

    Article  Google Scholar 

  • Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. Int Soc Microbiol/Ecol J 8:1464–1475

    CAS  Google Scholar 

  • McGenity T, Folwell B, McKew B, Sanni G (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 16:10. https://doi.org/10.1186/2046-9063-8-10

    Article  Google Scholar 

  • Menon VB, Nagarajan R, Wasan DT (1987) Separation of fine particles from non-aqueous media: free energy analysis and oil loss estimation. Sep Sci Technol 22:2295–2322

    Article  CAS  Google Scholar 

  • Mitra S, Kimmel DG, Snyder J, Scalise K, McGlaughon BD, Roman MR, Jahn GL, Pierson JJ, Brandt SB, Montoya JP, Rosenbauer RJ, Lorenson TD, Wong FL, Campbell PL (2012) Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico. Geophys Res Lett 39:L01605. https://doi.org/10.1029/2011GL049505

    Article  CAS  Google Scholar 

  • Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, Kalke RD, Kracker LM, Reuscher M, Rhodes ACE (2013) Deep-sea benthic footprint of the Deepwater Horizon blowout. PLoS One 8(8):e70540. https://doi.org/10.1371/journal.pone.0070540

    Article  CAS  Google Scholar 

  • Nishizawa S, Fukuda M, Inoue N (1954) Photographic study of suspended matter and plankton in the sea. Bull Fac Fish, Hokkaido Univ 5:36–40

    Google Scholar 

  • Niu H, Lee K (2013) Study the transport of oil-mineral-aggregates (OMAs) in marine environment and assessment of their potential risks to benthic organisms. Int J Environ Pollut 52:32–51. https://doi.org/10.1504/IJEP.2013.056356

    Article  CAS  Google Scholar 

  • O’Connor BS, Muller-Karger FE, Nero RW, Hu C, Peebles EB (2016) The role of Mississippi River discharge in offshore phytoplankton blooming in the northeastern Gulf of Mexico during August 2010. Remote Sens Environ 173:133–144

    Article  Google Scholar 

  • Omotoso OE, Munoz VA, Mikula RJ (2002) Mechanisms of crude oil–mineral interactions. Spill Sci Technol Bull 8:45–54

    Article  CAS  Google Scholar 

  • OSAT (2010) Summary report for sub-sea and sub-surface oil and dispersant detection: sampling and monitoring, Operational Science Advisory Team (OSAT) US. Department of Homeland Security, New Orleans, LA, pp 131

    Google Scholar 

  • Owens EH, Lee K (2003) Interaction of oil and mineral fines on shorelines: review and assessment. Mar Pollut Bull 47:397–405

    Article  CAS  Google Scholar 

  • Passow U, Sweet J, Francis S, Xu C, Dissanayake AL, Lin J, Santschi PH, Quigg A (2019) Incorporation of oil into diatom aggregates. Mar Ecol Prog Ser 612:65–86. https://doi.org/10.3354/meps12881

    Article  Google Scholar 

  • Passow U, Sweet J, Quigg A (2017) How the dispersant Corexit impacts the formation of sinking marine oil snow. Mar Pollut Bull 125:139–145

    Article  CAS  Google Scholar 

  • Passow U, Hetland R (2016) What happened to all of the oil? Oceanography 29:88–95

    Article  Google Scholar 

  • Passow U, Ziervogel K (2016) Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29:118–125

    Article  Google Scholar 

  • Passow U (2016) Formation of rapidly-sinking, oil-associated marine snow. Deep-Sea Res II 129:232. https://doi.org/10.1016/j.dsr2.2014.10.001

    Article  CAS  Google Scholar 

  • Passow U, Ziervogel K, Asper V, Dierks A (2012) Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett 7:11. https://doi.org/10.1088/1748-9326/7/3/035301

    Article  CAS  Google Scholar 

  • Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333

    Article  Google Scholar 

  • Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep-Sea Res II 42:99–109

    Article  CAS  Google Scholar 

  • Passow U, Alldredge AL (1994) Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean. Mar Ecol Prog Ser 113:185–198

    Article  Google Scholar 

  • Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep-Sea Res Oceanogr Abstr 41:335–357

    Article  CAS  Google Scholar 

  • Patton JS, Rigler MW, Boehm PD, Fiest DL (1981) Ixtoc I oil spill: flaking of surface mousse in the Gulf of Mexico. Nature 290:235–238

    Article  CAS  Google Scholar 

  • Payne JR, Clayton JR, Kirstein BE (2003) Oil/suspended particulate material interactions and sedimentation. Spill Sci Technol Bull 8:201–221

    Article  CAS  Google Scholar 

  • Pernice MC, Irene Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, del Carmen GF, Hernando-Morales V, Mackenzie R, Mestre M, Sintes E, Teira E, Valencia J, Varela MM, Vaqué D, Duarte CM, Gasol JM, Massana R (2015) Global distribution of planktonic heterotrophic protists in the deep ocean. ISME J 9:782–792

    Article  CAS  Google Scholar 

  • Ploug H, Iversen MH, Fischer G (2008) Ballast, sinking velocity and apparent diffusivity within marine snow and fecal pellets: implications and substrate turnover by attached bacteria. Limnol Oceanogr 53:1878–1886

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (2010) Microphysics of clouds and precipitation, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Quigg A, Passow U, Chin W-C, Xu C, Doyle S, Bretherton L, Kamalanathan M, Williams AK, Sylvan JB, Finkel ZV, Knap AH, Schwehr KA, Zhang S, Sun L, Wade TL, Obeid W, Hatcher PG, Santschi PH (2016) The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol Oceanogr Lett 1:3–26

    Article  Google Scholar 

  • Quigg A, Irwin AJ, Finkel ZV (2011) Evolutionary imprint of endosymbiosis of elemental stoichiometry: testing inheritance hypotheses. Proc R Soc: Biol Sci 278:526–534

    Article  Google Scholar 

  • Quigg A, Finkel ZV, Irwin AJ, Reinfelder JR, Rosenthal Y, Ho T-Y, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294

    Article  CAS  Google Scholar 

  • Remsen A, Daly K, Kramer K (2015) Plankton and particle response during the Deepwater Horizon oil spill: observations from the SIPPER imaging system. NOAA NRDA Report

    Google Scholar 

  • Reuscher MG, Baguley JG, Conrad-Forrest N, Cooksey C, Hyland JL, Lewis C, Montagna PA, Ricker RW, Rohal M, Washburn T (2017) Temporal patterns of the Deepwater Horizon impacts on the benthic infauna of the northern Gulf of Mexico continental slope. PLoS One 12(6):e0179923. https://doi.org/10.1371/journalpone.0179923

    Article  Google Scholar 

  • Riley GA (1963) Organic aggregates in seawater and the dynamics of their formation and utilization. Limnol Oceanogr 8:372–381

    Article  CAS  Google Scholar 

  • Romero IC, Toro-Farmer G, Diercks A-R, Schwing P, Muller-Karger F, Murawski S, Hollander DJ (2017) Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut 228:179–189

    Article  CAS  Google Scholar 

  • Romero IC, Schwing PT, Brooks GR, Larson RA, Hastings DW, Ellis G, Goddard EA, Hollander DJ (2015) Hydrocarbons in deep-sea sediments following the 2010 Deepwater Horizon blowout in the northeast Gulf of Mexico. PLoS One 10(5):e0128371

    Article  CAS  Google Scholar 

  • Salazar G, Cornejo-Castillo FM, Borrull E, Díez-Vives C, Lara E, Vaqué D, Arrieta JM, Duarte CM, Gasol JM, Acinas SG (2015) Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol 24:5692–5706

    Article  Google Scholar 

  • Schwing PT, O’Malley BJ, Hollander DJ (2018) Resilience of Benthic Foraminifera in the Northern Gulf of Mexico following the Deepwater Horizon event (2011–2015). Ecol Indic 84:753–764. https://doi.org/10.1016/j.ecolind.2017.09.044

    Article  Google Scholar 

  • Schwing PT, Brooks GR, Larson RA, Holmes CW, O’Malley BJ, Hollander DJ (2017) Constraining the spatial extent of the Marine Oil Snow Sedimentation and Accumulation (MOSSFA) following the DWH event using a 210Pbxs inventory approach. Environ Sci Technol 51:5962–5968. https://doi.org/10.1021/acs.est.7b00450

    Article  CAS  Google Scholar 

  • Schwing PT, Romero IC, Brooks GR, Hastings DW, Larson RA, Hollander DJ (2015) A decline in Deep-Sea benthic foraminifera following the Deepwater Horizon event in the Northeastern Gulf of Mexico. PLOSone 10(3):e0120565. https://doi.org/10.1371/journal.pone.0120565

    Article  CAS  Google Scholar 

  • Silver M (2015) Marine snow: a brief historical sketch. Limnol Oceanogr Bull 24:5–10

    Article  Google Scholar 

  • Silver MW, Gowing MM (1991) The “particle” flux: origins and biological components. Prog Oceanogr 26:75–113

    Article  Google Scholar 

  • Silver MW, Shanks AL, Trent JD (1978) Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201:371–373

    Article  CAS  Google Scholar 

  • Sterling MC, Bonner JS, Ernest ANS, Page CA, Autenrieth RL (2005) Application of fractal flocculation and vertical transport model to aquatic sol– sediment systems. Water Res 39:1818–1830

    Article  CAS  Google Scholar 

  • Sterling MC, Bonner JS, Ernest AN, Page CA, Autenrieth RL (2004) Characterizing aquatic sediment–oil aggregates using in situ instruments. Mar Pollut Bull 48:533–542

    Article  CAS  Google Scholar 

  • Stoffyn-Egli P, Lee K (2003) Formation and characterization of oil-mineral aggregates. Spill Sci Technol Bull 8:31–44

    Article  CAS  Google Scholar 

  • Stout SA, Payne JR (2016a) Macondo oil in deep-sea sediments: part 1 – sub-sea weathering of oil deposited on the seafloor. Mar Pollut Bull 108:365–380

    Article  CAS  Google Scholar 

  • Stout SA, Payne JR (2016b) Chemical composition of floating and sunken in-situ burn residues from the Deepwater Horizon oil spill. Mar Pollut Bull 111:186–202

    Article  CAS  Google Scholar 

  • Stout SA, German CR (2015) Characterization and Flux of Marine Oil Snow in the Viosca Knoll (Lophelia Reef) Area Due to the Deepwater Horizon Oil Spill Newfields, Rockland Massachusetts

    Google Scholar 

  • Suja LD, Summers S, Gutierrez T (2017) Role of EPS, dispersant and nutrients on the microbial response and MOS formation in the subarctic Northeast Atlantic. Front Microbiol 8:676. https://doi.org/10.3389/fmicb.2017.00676

    Article  Google Scholar 

  • Sun J, Khelifa A, Zhao C, Zhao D, Wang Z (2014) Laboratory investigation of oil–suspended particulate matter aggregation under different mixing conditions. Sci Total Environ 473:742–749

    Article  CAS  Google Scholar 

  • Sun J, Zhao D, Zhao C, Liu F, Zheng X (2013) Investigation of the kinetics of oil–suspended particulate matter aggregation. Mar Pollut Bull 76:250–257. https://doi.org/10.1016/j.marpolbul.2013.08.030

    Article  CAS  Google Scholar 

  • Sun J, Khelifa A, Zheng X, Wang Z, So LL, Wong S, Yang C, Fieldhouse B (2010) A laboratory study on the kinetics of the formation of oil-suspended particulate matter aggregates using the NIST-1941b sediment. Mar Pollut Bull 60:1701–1707

    Article  CAS  Google Scholar 

  • Sun J, Zheng XL (2009) A review of oil-suspended particulate matter aggregation natural process of cleansing spilled oil in the aquatic environment. J Environ Monit 11:1801–1809

    Article  CAS  Google Scholar 

  • Teal JM, Howarth RW (1984) Oil spill studies: a review of ecological effects. Environ Manag 8:27–44

    Article  Google Scholar 

  • Tsujita T (1953) A preliminary study on naturally occurring suspended organic matter in waters adjacent to Japan. (in Japanese, with a summary in English). J Oceanogr Soc Jpn 8:1–14

    Article  Google Scholar 

  • Valentine DL, Fisher GB, Bagby SC, Nelson RK, Reddy CM, Sylva SP, Woo MA (2014) Fallout plume of submerged oil from Deepwater Horizon. Proc Natl Acad Sci U S A 111:15906–15911. https://doi.org/10.1073/pnas.1414873111

    Article  CAS  Google Scholar 

  • Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM–POM continuum. Mar Chem 92:67–85

    Article  CAS  Google Scholar 

  • Volk T, Hoffert MI (1985) Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO: natural variations archean to present. American Geophysical Union, Washington, DC, pp 99–110

    Google Scholar 

  • Volkman JK, Tanoue E (2002) Chemical and biological studies of particulate organic matter in the ocean. J Oceanogr 58:265–279

    Article  CAS  Google Scholar 

  • Vonk SM, Hollander DJ, Murk ATJ (2015) Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique? Mar Pollut Bull 100:5–12

    Article  CAS  Google Scholar 

  • Wang W, Zheng Y, Lee K (2013) Chemical dispersion of oil with mineral fines in a low temperature environment. Mar Pollut Bull 72:205–212

    Article  CAS  Google Scholar 

  • Wang W, Zheng Y, Li Z, Lee K (2011) PIV investigation of oil–mineral interaction for an oil spill application. Chem Eng J 170:241–249

    Article  CAS  Google Scholar 

  • Washburn TW, Reuscher MG, Montagna PA, Cooksey C, Hyland JL (2017) Macrobenthic community structure in the deep Gulf of Mexico one year after the Deepwater Horizon blowout. Deep Sea Res Part 1 Oceanogr Res Pap 127:21–30. https://doi.org/10.1016/j.dsr.2017.06.001

    Article  Google Scholar 

  • Weise AM, Nalewajko C, Lee K (1999) Oil-mineral fine interactions facilitate oil biodegradation in seawater. Environ Technol 20:811–824

    Article  CAS  Google Scholar 

  • Wincele DE, Wrenn BA, Venosa AD (2004) Sedimentation of oil-mineral aggregates for remediation of vegetable oil spills. J Environ Eng 130:50–58

    Article  CAS  Google Scholar 

  • Wirth M, Passow U, Jeschek J, Hand I, Schulz-Bull DE (2018) Partitioning of oil compounds into marine oil snow: insights into prevailing mechanisms and dispersant effects. Marine Chemistry 206:62. https://doi.org/10.1016/j.marchem.2018.09.007

    Article  CAS  Google Scholar 

  • Wood PA, Lunel T, Daniel F, Swannell R, Lee K, Stoffyn-Egli P (1998) Influence of oil and mineral characteristics on oil-mineral interaction. In: Artic and marine oil spill program technical seminar. Ministry of Supply and Services, Canada, pp 51–78

    Google Scholar 

  • Xavier M, Passow U, Migon C, Burd AB, Legendre L (2017) Transparent exopolymer particles: effects on carbon cycling in the ocean. Prog Oceanogr 151:13–37

    Article  Google Scholar 

  • Yan B, Passow U, Chanton J, Nöthig E-M, Asper V, Sweet J, Pitiranggon M, Diercks A, Pak D (2016) Sustained deposition of contaminants from the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A:E3332–E3340. https://doi.org/10.1073/pnas.1513156113

    Article  CAS  Google Scholar 

  • Yang T, Nigro LM, Gutierrez T, D’ambrosio L, Joye SB, Highsmith R, Teske A (2016a) Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II Top Stud Oceanogr 129:282–291

    Article  CAS  Google Scholar 

  • Yang T, Speare K, McKay L, MacGregor BJ, Joye SB, Teske A (2016b) Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout. Front Microbiol 7:1384. https://doi.org/10.3389/fmicb.2016.01384. eCollection 2016

    Article  Google Scholar 

  • Zetsche E-M, Ploug H (2015) Particles in aquatic environments: from invisible exopolymers to sinking aggregates. Mar Chem 175:1–4

    Article  CAS  Google Scholar 

  • Zhang H, Khatibi M, Zheng Y, Lee K, Li Z, Mullin JV (2010) Investigation of OMA formation and the effect of minerals. Mar Pollut Bull 60:1433–1441

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, Katz J, Haspel G, Lee K, King T, Robison B (2017) A new mechanism of sediment attachment to oil in turbulent flows: projectile particles. Environ Sci Technol 51:11020–11028. https://doi.org/10.1021/acs.est.7b02032

    Article  CAS  Google Scholar 

  • Zhao L, Boufadel MC, Geng X, Lee K, King T, Robinson B, Fitzpatrick F (2016) A-DROP: a predictive model for the formation of oil particle aggregates (OPA). Mar Pollut Bull 106:245–259

    Article  CAS  Google Scholar 

  • Zhao L, Torlapati J, Boufadel MC, King T, Robinson B, Lee K (2014) VDROP: a comprehensive model for droplet formation of oils and gases in liquids-Incorporation of the interfacial tension and droplet viscosity. Chem Eng J 253:93–106

    Article  CAS  Google Scholar 

  • Ziervogel K, Joye SB, Arnosti C (2016) Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill. Deep-Sea Res II Top Stud Oceanogr 129:241–248

    Article  CAS  Google Scholar 

  • Ziervogel K, Joye SB, Arnosti C (2014) Microbial enzymatic activity and secondary production in sediments affected by the sedimentation event of oily-particulate matter from the Deepwater Horizon oil spill. Deep-Sea Res II Top Stud Oceanogr 129:241–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible by a grant from the Gulf of Mexico Research Initiative to Quigg (ADDOMEx), Passow (ADDOMEx, ECOGIG, FOMOSA), Daly (C-IMAGE, FOMOSA), Burd (FOMOSA), and Schwing/Hollander (C-IMAGE). Research support was also provided by the University of South Florida Division of Sponsored Research and Florida Institute of Oceanography to Daly and by the Multi-Partner Research Initiative, via the Department of Fisheries and Oceans, Canada, to Passow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonietta Quigg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quigg, A. et al. (2020). Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) Events: Learning from the Past to Predict the Future. In: Murawski, S., et al. Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-11605-7_12

Download citation

Publish with us

Policies and ethics